

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

The SOLID Principles
Approach to Write Robust Programs
This free book is provided by courtesy of C# Corner and Mindcracker Network and its

authors. Feel free to share this book with your friends and co-workers. Please do not

reproduce, republish, edit or copy this book.

Dedicated to my Younger sister - kanchan

Gaurav Kumar Arora

Author, C# Corner

Sam Hobbs

Editor, C# Corner

http://www.c-sharpcorner.com/

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Table of Contents

Myths related to SOLID... ... 3

 I know OOP so why do I need to learn S.O.L.I.D?

 I know Design Patterns so why do I need to learn S.O.L.I.D?

 SOLID Principles are only applicable to .NET/C# and not for Java

 As an Architect, do I really need to care about S.O.L.I.D?

 I am working in maintenance project, why do I care about S.O.L.I.D?

Introduction... 6

 Defining S.O.L.I.D

 Briefing Single responsibility principle (SRP)

 Learning Open/closed principle (OCP)

 Learning Liskov substitution principle (LSP)

 Learning Interface segregation principle (ISP)

 Learning Dependency inversion principle (DIP)

Single Responsibility Principle (SRP)... 9

Open/Closed Principle (OCP) ... 13

Liskov substitution principle (LSP)... 16

 How to implement LISCOV principle?

 Why did we implement IRule?

Interface segregation principle (ISP)... ... 20

Dependency inversion principle (DIP) ... 23

 Now what?

References.. 25

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Myths related to SOLID
There are many myths related to solid before going further lets first take a look about these myths and

how much these myths are having real existence.

I also called these as a stupid excuses not to implement the SOLID things or by these some techies hide

their main motive. Anyways, I do not want to go in this battle.

I found there are a few myths related to SOLID that cause architecture and Design Patterns to be in a

confusing mess.

There are many kinds of myths, some related to the structuring of programs and others related to Design

Patterns.

I know OOP so why do I need to learn S.O.L.I.D?

This is the biggest mistake when someone relates S.O.L.I.D to Object Oriented Programming. Earlier, I

was one of these people who believed that myth. OOP is a programming paradigm based on concepts of

object whereas S.O.L.I.D. are the programing principles that tell us how to write good programs.

I know Design Patterns so why do I need to learn S.O.L.I.D?

Again a mistake, design patterns are telling how to design our programs/software but on the other hand

S.O.L.I.D are only principles to make our program clean.

SOLID Principles are only applicable to .NET/C# and not for Java

One great misunderstanding about these Principles a myth, which says these principles are not applicable

for Java. Ah! What a myth :). These Principles are not related to any programming language or in other

words these principles are not built for any specific programming languages. These principles are just

kind of guidelines to make our code/program robust and it does not matter in which language the

program has been written.

 As an Architect, do I really need to care about S.O.L.I.D?

A myth talked by Mr. Nangal one of our readers, I am taking the honor to include the same. It is purely

un-realistic if someone say that these principles are not for Architects. As an architect - you should think

about a robust design, scalability, and components distribution.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

While designing any software/application, one should keep in mind all these principles. I agree there

would chances for overlapping but to make application design robust one should follow these.

These principles are applicable for all who involved in Technical part of the Software.

A Developer - needs to write a code in way so, he/she must obey these principles

A Reviewer - should review code/area in a way so, he/she must obey these principles

A Tech Lead - should guide the team in a way so, team must obey these principles

There may be long list depending upon the nature and size of a software/application.

I am working in maintenance project, why do I care about S.O.L.I.D?

There may be long list depending upon the nature and size of a software/application.

Interesting one, it vary project to project how one could implement these principles. But, we can't say

that in a maintenance type of project we neglect these principles.

I would take the opportunity to elaborate this with a real scenario example: a long time back, I worked on

a maintenance project and the interesting thing is that when I get a part of that team, the project was

almost done. I got some assignment and I noticed a much repeated code through-out the application. I

have to complete that assignment in 16Hrs (2days) including QA's efforts.

I approached to my Team Manager, unfortunately my manager wasn't convince from me, his words was

"we are almost done with this project, I do not care about the SOLID principles, also, we have received a

Green flag from our users/clients. If you can't complete this task within time limit then I have to assign

this task to someone else, choice is yours“.

It wasn't my day that day. Can you imagine, what did I do that time?

Many of us will definitely complete the task within a stipulated time period. We are developers and we

don't want to leave tasks.

Of course, I did not leave that task, I completed the same before time period but in my way of style. I

wrapped up a new class and added new functionality related to my task, wrote it in a way of S.O.L.I.D.

also, attached the similar things with this class so, other area of code could feel S.O.L.I.D. When I sent my

changes for review, I sent with these notes:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

"I noticed lot of code is repeating itself and some places are yak, need to clean up the things. I

implemented my changes by obeying S.O.L.I.D. Principles".

Can you imagine what would be the reply of code review?

Ah! I got a reply from a reviewer, who was much senior to me quoting notes "Gaurav, I am reviewing this

project from last 17-months and did not find any discrepancies. However, I noticed few things in your

code as mentioned below, request you to make appropriate changes."

I made all the requested changes, which are just cosmetic things not related to S.O.L.I.D or my way of

coding and my changes get approved after QA and deployed with release.

Now, think the story about this incident, we got a call for code-review by the client. We have a meeting, I

wasn't the part of that meeting only few senior guys of our team, attended.

Suddenly, I got a phone call on my desk from my manager with words "Come at conference hall, client is

calling". It was a video conference call, and suddenly my manager introduced me to client.

I was shocked when client asked about my work experience and the approach why I should write the

code in this way. Crap man! I was not in my zone that time.

Suddenly client clapped and said 'great, you're done it in a good manner'. ...

My motto to give the above scenario is just, what if I felt that I am a developer and working in a

maintenance project also, my project is having final release, why should i bother about all these principle.

As, I said, it depends/vary project-to-project that how to implement these principles, but it is

recommendable never forget these principles.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Introduction
Object Oriented Programming (OOP) PROVIDES a way to write and polish our programs in a better shape

and way. These are basic points that guide us for how to write a good program.

For great Object Oriented Designs (OOD) we need to think beyond this. S.O.L.I.D principles provide us a

way to write great design, yes there are certain design patterns, that guide us the same but SOLID exist

much before these patterns

Let’s discuss and understand all of that using C# code snippets as in the following:

Defining S.O.L.I.D

This is an acronym introduced by Michael Feathers as:

S for SRP: Single Responsibility Principle.

O for OCP: Open/Closed Principle.

L for LSP: Liskov Substitution Principle.

I for ISP: Interface Segregation Principle.

D for DIP: Dependency Inversion Principle.

Briefing Single responsibility principle (SRP)

Name of this principle described itself, it should have single responsibility. Who should have single

responsibility? Here, we are studying/learning principles to design best classes/programs/systems.

In reference to this I would say “A class should have single responsibility”. Let’s dive into ocean – can we

read this like “a class should not design to do multiple activities”, so, what kind of activities

Let’s think I have to design a system which provide me employee details, so, it should include activities,

general I have CRUD (Create Read Update Delete) operations. Now, as per Single responsibility principle, I

have to design a class, which should do any of these operations but not all of these :)

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

I am remembering my old days, when I was learning C++. Generally, I was writing 1000s lines of code in a

one program contains many if…else. At that time I was happy to run these programs.

Now, today’s I do not like a method which contains more than 4-5 lines, how world changed?

When I was learning this principle, question was in my mind, why class should not responsible for

multiple responsibility? I found the answer as:

More, responsibility tied classes towards more changes in future.

Yes, this is true, if I designed a class (I will explain using my old days code in coming learning part of

S.O.L.I.D), which is responsible to modify data, retrieve data and then save data. In future if there is such

kind of business requirements, where our modification or data retrieval logic would be changed then we

have to change our classes many time and at many places, this would be encountered more bugs and

more code changes.

Finally, we can define Single responsibility principle as:

“Class should be designed for single responsibility and there should not more than one reasons to make

changes in this class. The responsibility of this class should be completely tide/encapsulated by the class.”

Learning Open/closed principle (OCP)

When, I read this principle, I thought it looks like that my class should be open or closed, I thought either

one. But when I read following definition from wiki:

“software entities (classes, modules, functions, etc.) should be open for extension, but closed for

modification”

I was shocked to think how it is possible to make my class open and closed and not open or close, I

thought in other words how can I allow things to modify without doing actual modifications to my object,

it was just confusing to me

I dive into OOPs (Object Oriented Programming) for answer to my question. Let’s think about abstraction;

we can create a base class and veritable functions with different behavior. Yes, we can allow changes by

keeping objects unchanged.

Let take an example: We have to send an email for different operations body of emails depend upon

certain business rules and can contain different or same messages. Now, what we can do here, we can

create a class like CreateEmail or whatever you want to name it, with one method BuildMessage. So, this

class is only and only responsible to build email messages as per different logics as this method is over-

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

riddable I can define it functionality per my choice. Isn’t it interesting and easy [In coming parts, I will try

to explain in details using code-examples].

Learning Liskov substitution principle (LSP)

Here is definition from wiki:

“if S is a subtype of T, then objects of type T may be replaced with objects of type S (i.e., objects of type S

may be substituted for objects of type T) without altering any of the desirable properties of that program

(correctness, task performed, etc.)”

I understood above definition like this: parent should easily replace the child object.

To understand it bit more, let’s look into example of EmailNotifications(considered in OCP, above), now

let’s say we need to also send this email for print what we can do? We can create a new class, let’s call it

NotificationsForPrint or whatever name you would like :) it inherits our class EmailNotifications. Now, out

both classes base and child class having at least one similar methods.

Can we use our child class to substitute our base class, no, in this situation never? So, we need to use

inheritance, define two separate interfaces one is building message and another one is sending message

and let’s decide in implementation where for what we need to build and send messages. I will explain

this example in details – in coming parts.

Learning Interface segregation principle (ISP)

Here is a definition from wiki:

“No clients should be forced to implement methods which it does not use and the contract should be

broken into small and more specific interfaces.”

I took this correct as: “as a client why should I implement 9-methods of interface when I need only 3-

methods”, isn’t it make developers life easy

This also similar to High Cohesion Principle of GRASP.

Think, can we consider our EmailNotification example (for both scenarios print and send via smtp

server)?

Learning Dependency inversion principle (DIP)

This principle remembers us Decoupling

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

“High level modules should not depends upon low-level modules both should be tide using abstractions”

What does this mean? Let’s take a look into our EmailNotification example once again and think why

should our code decide where to send my email (smtp server or printer) at very beginning.

Single Responsibility Principle (SRP)
The principle is self describing, there should be a single responsibility. Who should have a single

responsibility? Here, we are studying/learning principles to design the best classes/programs/systems.

In reference to this I would say "A class should have a single responsibility". Let's dive into the ocean. To

read this like "a class should not be designed to do multiple activities", so, what kind of activities?

Let's think. I need to design a system that provides me employee details, so it should include activities.

Generally I have Create, Read, Update and Delete (CRUD) operations. Now, as in the Single responsibility

principle, I need to design a class, which should do any of these operations but not all of these.

"I am remembering my old days, when I was learning C++. Generally, I was writing 1000s lines of code in a

one program containing many if..else. At that time I was happy to run these programs”.

Now, today I do not like a method that contains more than 4-5 lines, how has the world changed?"

When I was learning this principle, the question was in my mind, why is a class not responsible for

multiple responsibilities? I found the answer as:

It is more a matter of the responsibility of classes being tied towards more changes in the future.

Yes, this is true, if I designed a class (I will explain using my old days code in a future learning part of

S.O.L.I.D), that is responsible to modify data, retrieve data and then save data in the future if there is.

For such kinds of business requirements, where our modification or data retrieval logic would be changed

then we need to change our classes many times and in many places, this would introduce more bugs and

more code changes.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now, have a look at the following snippet:

In our class DataMigrater has too many responsibilities. This class:

 Fetches data

 Processes data

 Then, migrates the data

So, what is the SRP that our class is doing wrong? Here, we are not following S.O.L.I.D. What should our

class do? Let's start from the name of the class, in other words DataMigrate, this looks to me to be a

class that should be responsible only for migrating data. So, the class should not be concerned with what

and how the data is coming for migration.

One more reason, a class should be responsible for only one thing. Let's think of a scenario where the

method:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Throws an exception and our data does not get migrated. Now, we need to verify all three methods

because we are not sure if the data is well fetched or well processed. This has provided us many burdens.

Do you want to bear this load? I am sure, no developer wants to bear this.

Now, a big question is, how to do that? Have a look at the following snippet:

Now, our class has only one method, Migrate(). You noticed that there are many changes made in this

class, we will discuss all one-by-one in future articles. As of now let's concentrate on the Single

Responsibility Principle.

In the preceding, our class is now only concerned with the Migrate Server data. This class is not

concerned with whether the supplied data is processed or raw, there are other classes responsible for

these things now.

See the following:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now, our program is changed as:

Finally, we can define the Single responsibility principle as:

"A class should be designed for single responsibility and there should not be more than one reason to

make changes to this class. The responsibility of this class should be completely tied/encapsulated by the

class."

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Open/Closed Principle (OCP)
When I first read this principle, I thought it meant my class should be open or closed, I thought either

one. But when I read the following definition from the wiki:

"Software entities (classes, modules, functions, and so on) should be open for extension, but closed for

modification"

I was shocked to think how it is possible to make my class open and closed and not open or closed. In

other words, I thought how can I allow things to modify without doing the actual modifications to my

object, it was just confusing to me.

I dive into Object Oriented Programming (OOP) for answer to my question. Let's think about abstraction;

we can create a base class and overridable functions with different behavior. Yes, we can allow changes

by keeping objects unchanged.

Let's take an example: We need to send an email for various operations in the body of emails depending

upon certain business rules and can contain different or the same messages. Now, what do we need to

do here?

We can create a class like CreateEmail or whatever you want to name it, with one method BuildMessage.

So, this class is only responsible for building email messages as per different logic. Since this method is

overridable I can define its functionality as I choose to.

Doesn't it look very interesting and easy?

In continuation with our preceding code of example, we need to update our database from one server to

another server (suppose we need to refresh our Development database from production), but there are

some rules, like the data-type should be the same, the data value should be changed and so on.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Can you think, what is wrong with the preceding code?

Let's discuss now, have a look at the class ValidateData. First of all it is doing two activities, in other

words our class is responsible for the following two things:

 To validate incoming data (from source server)

 To save data

Now, think of the scenario that someone wants to extend this, so it could use another external service. In

this scenario he/she would have no other choice but to modify the IsValid method. Also, if someone

must make it a component and provide it to third parties for their use, then its users would have no way

to add another service. This means this class is not open for extensions. On the other hand if someone

needs to modify the behavior to persist data, they need to change the actual class.

To sum-up, this class is directly violating OCP since this is neither open for extensions nor closed for

modifications.

So, what would be a better solution for this class, so it conforms to OCP?

Remember abstraction, let's try to do something by creating an interface:

The preceding code snippet is self-explanatory, where we defined IDataValidator that has a method

Validate.

The method name describes itself, it's a part of DataValidator, and so it should validate data, so it is

named Validate.

Now, redesign our class ValidateData:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Stay here to discuss the preceding snippet! In the preceding we have a ValidateData class that is only

responsible for validating data by certain validations/rules.

With the preceding changes, our class is not more stable and robust, we can add as many validators as

we want. Also, you can use this validator to save your data.

Ah! I forget to mention, you can save the data just by calling this validator from another class, it could be

a repository class or your custom class where you just persist your data.

I am not going to write that part of save, you can easily implement this by yourself.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Liskov substitution principle (LSP)
Let’s understand this principle from following definition of wiki:

"if S is a subtype of T, then objects of type T may be replaced with objects of type S (in other words,

objects of type S may be substituted for objects of type T) without altering any of the desirable properties

of that program (correctness, task performed, and so on)"

I understood the preceding definition to bean that the parent should easily replace the child object.

To understand it a bit more, let's look into an example of EmailNotifications (considered in OCP, above).

Now let's say we need to also send this email for printing, what can we do?

We can create a new class. Let's call it NotificationsForPrint or whatever name you would like. It inherits

our class EmailNotifications. Now, both classes, the base and child classes, have at least one similar

method.

Can we use our child class to substitute our base class? No, in this situation, never. So, we need to use

inheritance. Define two separate interfaces, one for building the message and another for sending the

message and let's decide on the implementation of where and for what we need to build and send

messages.

Have a look at the following snippet:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Recall inheritance and you can visualize that DataBase is a parent class of ProdDB, QADB and LocalDB.

Let's think of polymorphism for a while and we can write it as in the following

Isn't it easy to save my object using this?

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

What's wrong in the preceding, nothing?

Yes, you are absolutely correct, there is nothing wrong with the preceding code, the only thing is, its

execution. When the preceding code executes, it will also invoke a save method of the LocalDB object. In

this case we received an exception since our LocalDB object is not supposed to save data.

A big question is, why did this happen?

In simple words LocalDB is actually not an entity of DataBase or we can say DataBase is not an actual

parent of LocalDB.

Another question is, why is LocalDB not an entity of DataBase, when it inherits DataBase?

Hold on, go back to the LocalDB class and check, This is not meant to implement a Save() method, here

this makes LocalDB a separate entity.

In simple words, LISCOV says the parent should easily replace its child.

How to implement LISCOV principle?

We know LocalDB is not supposed to save data but others are. Let's consider the following snippet:

We now have two interfaces with their own methods. IRule to validate data and IRepository to

save/persist data.

Let's make changes to our LocalDB class, as:

Why did we implement IRule?

For LocalDB, we only want to check whether the data is valid or not. We do not want to persist the data

in any scenario.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now, we can't write this:

Our DataBase class, should be like this:

The other classes will remain unchanged.

Our execution code goes as

Now, our code looks easier to handle.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Interface segregation principle (ISP)

Let’s understand this principle from following definition of wiki:

"No clients should be forced to implement methods that it does not use and the contract should be broken

into small and more specific interfaces."

I took this correct as: "as a client, why should I implement 9 methods of an interface when I need only 3

methods", doesn't it make a developers life easy?

This also similar to the High Cohesion Principle of GRASP.

Think, can we consider our EmailNotification example (for both scenarios print and send via SMTP

server)?

Let's explore this with an example.

First of all go back and have a look at the code example discussed in LSP, there some of our databases are

being saved after validation. Now, think of a scenario were there are more databases and for these

additional databases we require a report in, other words new databases need to be read and saved.

In the very first instance, I can think to add a new method to the interface IRepository (that can read data

or generate a report).

Do you think the preceding approach is good?

Think, think and again think.... :)

By adding a new method to an existing interface, we are forcing the use of a new method to all those

classes that are already implementing this interface. But those classes are not supposed to use any newly

added method. So, my ProdDB class looks like:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

But actually, the ProdDB class does not require to Generate a report, but with the preceding

implementation this class must be implemented in a new Generate() method.

Here, we are forcing our class to implement that method, that this class does not want.

So, we are not following the Interface Segregation Principle in our preceding code (go the top and read

the ISP definition :)).

What is the solution for this problem?

First, try to segregate our IRepository interface.

To segregate, I created another IReport interface with the new method Generate(). Now, we have two

separate interfaces, IRepository and IReport.

Let's create a new class that is meant for the clients that want to generate the report:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

At this point, we have two different classes, DataBase and DataBaseReport. One is for those clients who

don't want to generate a report and another is for those that do want to generate a report :)

So, our execute method would look like:

You can see how we resolved the problem. This solution will be very useful when millions of clients need

different things whereas our existing clients don't.

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Dependency inversion principle (DIP)
Dependency inversion principle is something related to Decoupling.

Which says “High level modules should not depend upon low-level modules, both should be tied using

abstractions”

What does this mean? Let's have a look into our EmailNotification example once again and think, why

our code should decide where to send my email (SMTP server or printer) at the very beginning.

 Why not it should automatically perform a preferable action (we will have a look at the details in future

parts)? Until then have a look into this pattern on the wiki.

Let's explore this with an example.

In the Rewind code example, we discussed the Single Responsible Principle. There is a property Type, that

tells the data type, now have a look at the following snippet.

There is a violation of SRP in the preceding, to solve this let's create a separate interface that holds a save

method as in the following:

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

Now what?

We need to supply a Session depending on Data type. Here we are delegating the responsibility to

someone else. In other words, for the preceding snippet our DataBase class is delegating its responsibility

to others (ServerDataSession and SourceServerDataSession). We need to modify our DataBase class as in

the following:

At this point, our client is free to inject what he/she wants to consume:

"No clients should be forced to implement methods that it does not use and the contract should be broken

into small and more specific interfaces."

I took this correct as: "as a client, why should I implement 9 methods of an interface when I need only 3

methods", doesn't it make a developers life easy?

©2015 C# CORNER.

SHARE THIS DOCUMENT AS IT IS. PLEASE DO NOT REPRODUCE, REPUBLISH, CHANGE OR COPY.

References
References used in this books:

 http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

 http://en.wikipedia.org/w/index.php?title=Michael_Feathers&action=edit&redlink=1

 http://en.wikipedia.org/wiki/Open/closed_principle

 http://en.wikipedia.org/wiki/Liskov_substitution_principle

 http://en.wikipedia.org/wiki/GRASP_(object-oriented_design)

 http://en.wikipedia.org/wiki/Coupling_(computer_programming)

 https://github.com/garora/somestuff/tree/master/LearningSolid

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://en.wikipedia.org/w/index.php?title=Michael_Feathers&action=edit&redlink=1
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
http://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://github.com/garora/somestuff/tree/master/LearningSolid

