
1
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

MICROSOFT DYNAMICS® AX 2012

PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT TOOLKIT (SDK)

The Microsoft Dynamics AX 2012 Benchmark SDK provides partners and customers with extensible features to

develop benchmarks that closely mimic their custom implementation.

June 2013

http://www.microsoft.com/dynamics/ax

http://blogs.msdn.com/axperf

http://www.microsoft.com/dynamics/ax
http://blogs.msdn.com/axperf

2
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

TABLE OF CONTENTS

Introduction ... 4

What it includes ... 4

Installation ... 6

Prerequisites .. 6

Downloading and installing the Benchmark SDK ... 6

Visual Studio Tools for generating proxies .. 7

Configuration ... 7

Data source files .. 8

Creating a new load test .. 15

Modifying the TestContext parameters .. 15

Modifying the test run settings ... 17

Configuring Enterprise Portal .. 19

Configuring batch servers .. 20

Configuring Application Integration Framework ... 20

Running the Benchmark SDK ... 23

Rich client .. 23

Enterprise Portal .. 24

Application Integration Framework ... 26

Developing a custom benchmark .. 29

Principles for identifying what goes into the wrapper .. 30

Using the Microsoft Dynamics AX Benchmark Proxies to write wrapper code ... 39

Writing a unit test by using the code generated from the Programming Model Proxy .. 43

Creating and initializing a load test ... 43

3
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Passing TestContext parameters to the unit test .. 48

Writing a new Enterprise Portal unit test .. 50

Writing a new Application Integration Framework scenario ... 62

Generating a new unit test script for a load test ... 63

Adding timers to measure performance ... 66

Performance monitoring and reporting .. 67

Opening test run details in Visual Studio ... 67

Checking for errors .. 68

Transaction details ... 70

Totals and response times ... 70

Performance counters ... 71

Counter sets ... 73

Using counter sets ... 73

Creating custom counter sets .. 73

Working with load test results graphs ... 74

Built-in graphs .. 74

Counters displayed in graphs... 74

Displaying counters on graphs ... 74

Creating custom graphs ... 75

4
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

INTRODUCTION

The Microsoft Dynamics® AX 2012 Performance Benchmark software development toolkit (SDK) lets partners and

customers quickly develop managed tests that simulate multiple-user activity on Microsoft Dynamics AX. The

Benchmark SDK is developed by using Microsoft Visual Studio® 2010; therefore, we can use the Load Test

functionality to run stress and performance tests for Microsoft Dynamics AX. This lets you set benchmarks for any

Microsoft Dynamics AX scenario more easily, because you can collect test results from the Benchmark SDK.

The Benchmark SDK is available for download from InformationSource.

WHAT IT INCLUDES

The following are the core components of the Benchmark SDK folders:

 Library – Contains all utilities, such as proxies and plug-ins.)

 Main Test – Contains load test files.

 Scenarios – Contains the implementation of unit tests to simulate Microsoft Dynamics AX transactions.

Library

The Library section consists of four Visual Studio 2010 Class Library projects. The purpose of each Class Library

project is described here:

 MS.Dynamics.AX.Benchmark.SDK.Proxies – This Class Library project contains Microsoft Dynamics AX proxy

classes; each proxy provides a type-safe and natural interface to the corresponding Application Object Tree

(AOT) items. The C# code inside a proxy makes calls to the Microsoft.Dynamics.AX.ManagedInterop.dll

assembly (which is called as the Managed Interop Layer or MIL) to communicate with the corresponding

Microsoft Dynamics AX items.

 MS.Dynamics.AX.Benchmark.SDK.LoadTestPlugin – This Class Library project contains one load test plug-in

class and a few dependency classes. Load test plug-ins are user-defined classes that implement the

ILoadTestPlugin interface. Load test plug-ins enable custom load test control; for example, you can initialize a

few classes and tables during the load test initialization, or abort a load test when a counter or error threshold

is met. Because the Benchmark SDK contains 13 default scenarios, to distinguish data and method calls from

one another, there is only one centralized plug-in class, and other scenario-specific classes inherit it. For more

information about load test plug-ins, see http://msdn.microsoft.com/en-us/library/ee923683(v=vs.100).aspx.

 MS.Dynamics.AX.Benchmark.SDK.RandomNumberGen – This project supports the random test data selection

procedure from the data source files. For more information about data source files, see the “Data source files”

section.

http://go.microsoft.com/fwlink/?LinkId=306263
http://msdn.microsoft.com/en-us/library/ee923683(v=vs.100).aspx

5
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 MS.Dynamics.AX.Benchmark.SDK.Tools – The main functionalities supported by this project are maintaining

user sessions (Session Manager) and synchronizing log data after each transaction.

Main Test

This section contains a single project of type Test Project, which has a single [testname].loadtest file. This

[testname].loadtest file is responsible for triggering any test using the Benchmark SDK. The test mix, user load

pattern, and run setting parameters set in this file affect the run result. Copies of this file can be made and

modified to simulate different load test scenarios. For more information about performance testing, see

http://msdn.microsoft.com/en-us/library/dd293540(v=vs.100).aspx.

Scenarios

This section includes a set of standard industry vertical scenarios that can be adapted to the user's needs. These

scenarios are maintained in separate solution folders, which include the following:

 AIF Sales Order Service

 EP Expense

 EP Time Sheet

 EP Purchase Requisition

 EP Shopping Cart

 Free Text Invoicing

 Item Arrivals

 Ledger Journal Posting

 Project Quotation

 Purchase Order

 Sales and Distribution

 Sales Quotation

 Stock Transfer

Again, each thick client scenario solution folder contains two types of projects. For example, the Sales and

Distribution scenario solution folder contains the following projects:

http://msdn.microsoft.com/en-us/library/dd293540(v=vs.100).aspx

6
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 MS.Dynamics.AX.Benchmark.SDK.SalesAndDistribution – This Class Library project contains and implements

the method calls to MS.Dynamics.AX.Benchmark.SDK.Proxies.dll to communicate with Microsoft Dynamics AX.

 MS.Dynamics.AX.Benchmark.SDK.TestProject.SalesAndDistribution – This test project contains all of a

scenario-specific transaction’s unit test methods. Internally, it calls the

MS.Dynamics.AX.Benchmark.SDK.SalesAndDistribution project class to complete the required end-to-end

transaction.

All other thick client scenarios have the same structure.

All Enterprise Portal for Microsoft Dynamics AX (EP) scenarios are maintained under a single web load test project.

The Application Integration Framework (AIF) Sales Order service is maintained inside a single test project.

INSTALLATION

You should install the Microsoft Dynamics AX 2012 Benchmark SDK on a separate machine from the database and

application servers, unless you are using the Benchmark SDK for debugging or testing purposes.

PREREQUISITES

 A computer running Visual Studio 2010 Ultimate Edition.

 To run actual load tests, you also need Visual Studio 2010 Test Controller and Test Agents. See

http://msdn.microsoft.com/en-us/library/ms243155(v=vs.100).aspx for information about configuring Test

Controller and Test Agents. See http://msdn.microsoft.com/en-us/library/ff937706(v=vs.100).aspx for the

system requirements for simulating various loads.

 Install the controller software on a system that has Visual Studio 2010 Ultimate Edition.

 Install the agent software on the client machines used to generate load. The number of agents you need

depends on the number of users you want to load and the configuration of the system

 At least one computer hosting the Benchmark SDK must have the Microsoft Dynamics AX 2012 Visual Studio

Tools (http://msdn.microsoft.com/EN-US/library/dd309576.aspx) and Microsoft Dynamics AX .NET Business

Connector.

 An active Microsoft Dynamics AX 2012 application server.

 Microsoft SQL Server® Express or SQL Server to host the Visual Studio load test database.

DOWNLOADING AND INSTALLING THE BENCHMARK SDK

The Benchmark SDK is released under the Microsoft Software License terms that are included with the Benchmark

SDK.

http://msdn.microsoft.com/en-us/library/ms243155(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff937706(v=vs.100).aspx
http://msdn.microsoft.com/EN-US/library/dd309576.aspx

7
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

The Benchmark SDK is distributed as a Microsoft Installer.

Install the Benchmark SDK by executing the setup file included in the root folder.

1. On the Welcome page of the installation wizard, click Next.

2. On License Agreement page of the installation wizard, select “I Agree” option and click Next.

3. On the Select Installation Folder page, accept the default installation folder, or designate a different one. By

default, the toolkit files are installed at C:\Program Files (x86)\Microsoft\MSAXBMSDK \. Then click Next.

4. On the Confirm Installation page, click Next to begin installing.

5. When the installation is completed, click Close.

A copy of the Benchmark SDK project is created in the installation folder.

 Import the PrivateProject_PurchOrderForDatasetForBenchmark.xpo file from C:\Program Files

(x86)\Microsoft\MSAXBMSDK\IA_Prerequisite location into Microsoft Dynamics AX. Open the solution file

in Visual Studio 2010 and build it. After the build is successful, refer to Running the Benchmark SDK.

Note: Before you open the Benchmark SDK solution file in Visual Studio 2010, Microsoft Dynamics AX 2012

must be running and you must import the PrivateProject_PurchOrderForDatasetForBenchmark.xpo into

Microsoft Dynamics AX 2012.

VISUAL STUDIO TOOLS FOR GENERATING PROXIES

The proxy classes in the MS.Dynamics.AX.Benchmark.SDK.Proxies project represent Microsoft Dynamics AX AOT

items, such as classes, tables, and enums. Visual Studio fails to load this project unless Microsoft Dynamics AX 2012

Visual Studio Tools is installed. See http://msdn.microsoft.com/EN-US/library/dd309576.aspx for more

information about installation.

When you add an X++ object to a project by using Application Explorer, a proxy for that class is created internally

by the system. After the proxy is created, that type is available as a strong type, and features such as IntelliSense

are available. For more information, see Integration with X++ Objects from Visual Studio and Walkthrough: Adding

an X++ Object to a Visual Studio Project. For more information about proxies, see Proxy Classes for .NET Interop to

X++.

If you change an X++ object after you add it to a project, the proxy is automatically updated.

CONFIGURATION

If you choose to run one of the predefined scenarios included with the Microsoft Dynamics AX 2012 Benchmark

SDK, you need to perform additional configuration before applying the scenario to your dataset.

http://msdn.microsoft.com/EN-US/library/dd309576.aspx
http://msdn.microsoft.com/en-us/library/gg889166.aspx
http://msdn.microsoft.com/en-us/library/gg889200.aspx
http://msdn.microsoft.com/en-us/library/gg889200.aspx
http://msdn.microsoft.com/en-us/library/gg879799.aspx
http://msdn.microsoft.com/en-us/library/gg879799.aspx

8
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

DATA SOURCE FILES

Data source files are located in the root of the Benchmark SDK installation folder. These are text files mainly

containing test data that is used during the execution of performance tests. For example, predefined data source

files specify customers and items that are used when a sales order is created.

These files should be modified depending on the scenario being tested and the data in the database. Some of the

data source files can specify a range of data, and some can specify a list of data, as shown in the following table.

Specification Example Comment

Range (under the Min, Max
header)

1,1000 This entry in the sales order item distribution data source
(SO_Items.csv) lets you use items ranging from 1 to 1000 while
creating lines in a sales order. ItemId_Prefix denotes the series
name with which items are generated—for example, A, E, or L.
When the items are assigned, this entry is taken along with
ItemId_Prefix.

List A01

B01

C01

This entry in the sales order customers data source
(SO_Customers.csv) lets you use customers A01, B01, and C01.

In some cases, the data source files are used to control the characteristics of the transaction. For example, the

number of lines in a sales order can be controlled by a value in the SO_LineCount.csv file.

In most cases, the data in these files also lets you control distribution of the test data being used.

For example, when sales order lines are created, the following entry in the item distribution data source

(SO_Items.csv) not only lets you use location-controlled items ranging from L0001 to L4000, and batch-controlled

items ranging from B0001 to B1000, but also distributes location and batch-controlled items at 80 percent and 20

percent, respectively:

L, 1, 1000, Location

L, 1001, 2000, Location

L, 2001, 3000, Location

L, 3001, 4000, Location

B, 1, 1000, Batch

If you want 20 percent of item lines to have markup lines attached, you can include the following entry in the

markup distribution data source (SO_MarkupTrans.csv). In this case, of the 20 percent of items that have markup

lines attached, around 50 percent will have one markup line; the rest will have two.

1

9
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

2

0

0

0

0

0

0

0

0

Sequential vs. random access

Most of the data source files are accessed randomly, which means that each test picks up data from a random row

in these files. However, a few of these files are accessed sequentially to avoid repeated use of the same data. For

example, when prospects are converted to customers, a prospect is not repeated. Another example is item arrival,

where a purchase order is not reused. In both of these cases, the data is accessed sequentially. If you use multiple

agents, this approach of reading from a text file does not work, because each agent is a different process and has

its own copy of the data source text file. In such scenarios, sequential data reading can also be achieved by

creating a custom table in Microsoft Dynamics, and by writing a custom class with a method that applies a

pessimistic lock on this custom table, reads the next unused value from the table, and then returns it after flagging

it as ‘used.’ Because of the pessimistic lock on the custom table, a single purchase order ID can be accessed by one

user at a time.

Example

To enable an Item Arrival scenario to execute properly, import

PrivateProject_PurchOrderForDatasetForBenchmark.xpo (which is present inside the Benchmark SDK, at

../MSAXBMSDK\IA_Prerequisite) into Microsoft Dynamics AX. This .xpo file handles purchase order creation and

import to a custom table (PurchOrderForBenchmark), and the getPurchId() method retrieves purchase order IDs

from the custom table. The code inside the getPurchId method looks as follows.

public PurchId getPurchId()

{

 PurchOrderForBenchmark purchOrderForBenchmark;

 purchOrderForBenchmark.readPast(true);

10
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 ttsBegin;

 select pessimisticLock firstOnly purchOrderForBenchmark

 where purchOrderForBenchmark.PickedForProcessing==NoYes::No;

 if(purchOrderForBenchmark)

 {

 purchOrderForBenchmark.PickedForProcessing=NoYes::Yes;

 purchOrderForBenchmark.update();

 }

 ttsCommit;

 purchOrderForBenchmark.readPast(false);

 return purchOrderForBenchmark.PurchId;

}

Points to keep in mind

 Ensure that data provided in the data source files is valid test data in Microsoft Dynamics AX.

 Ensure that none of the data source files have blank or empty lines in the middle or at the end of the file.

 The data from these data source files is mostly read from Library >

MS.Dynamics.AX.Benchmark.SDK.LoadTestPlugin > <scenarioName>.PerformanceBenchmarkPlugin.cs, but

in some cases, the data source files are accessed from Scenarios > <scenarioName> >

MS.Dynamics.AX.Benchmark.SDK.TestProject.<scenarioName> > <scenarioName>.cs.

 Some of the values, such as warehouse, might have been hard-coded in the Benchmark SDK. You can analyze

the code in Scenarios > <scenarioName> > MS.Dynamics.AX.Benchmark.SDK.TestProject.<scenarioName> to

find such instances.

 Ensure that there is enough data for the period of test execution, especially for files that are accessed

sequentially.

 Before running final tests, manually verify a transaction by using the Microsoft Dynamics AX client, and make

sure that it has been processed as expected for the scenario being tested.

Details about the data source files

11
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

All the data source file names start with an abbreviated form of the scenario name. See the following table for

more details about each data source file.

Scenario Data source File type Access type Description

All Scenarios UserManagement.csv List Random Domain credentials of the test
users to use.

Sales Order SO_Customers.csv List Random Customer account numbers to
use while creating a sales order.

Sales Order SO_InventDimForBatch.csv Range Random Invent batch, site, and location
details to use while creating
sales order lines.

Sales Order SO_InventDimForLocation.csv List Random Invent to and from location
details to use while creating a
sales order.

Sales Order SO_LineCount.csv List Random The number of item lines to
create in a sales order.

Sales Order SO_Reservation.csv List Random The value to set in the
Reservation column.

Sales Order SO_Items.csv Range Random Items to use while creating a
sales order list

Sales Order SO_MarkupTrans.csv List Random The number of markup lines to
create under item lines. Use 0 if
you do not want markup lines
attached.

Sales Order SO_MarkupType.csv List Random A list of markup types to use
during testing.

Sales Order SO_Quantity.csv List Random The quantity to use for items in
a sales order.

Sales Order SO_Usermanagement.csv List Random Domain credentials of the test
users to use to create a sales
order.

Purchase
Order

PO_Items.csv Range Random Items to use while creating
purchase order lines.

Purchase
Order

PO_LineCount.csv List Random The number of item lines to
create in a purchase order.

Purchase
Order

PO_Quantity.csv List Random The quantity to use for items in
a purchase order.

Purchase
Order

PO_Vendors.csv List Random Vendor accounts.

Purchase
Order

PO_usermanagement.csv List Random Domain credentials of the test
users to use to create a
purchase order.

Purchase
Order

PO_MarkupType.csv List Random A list of markup types to use
during testing.

Purchase
Order

PO_InventDim.csv List Random A list of locations where items
are present.

12
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Scenario Data source File type Access type Description

Sales
Quotation

SQ_BusRelAccounts.csv List Random Business relation and customer
accounts.

Sales
Quotation

SQ_LineCount.csv List Random The number of item lines to
create in a sales quotation.

Sales
Quotation

SQ_Items.csv Range Random Items to use while creating
sales quotation lines.

Sales
Quotation

SQ_MarkupTrans.csv List Random The number of markup lines to
create under item lines. Use 0 if
you do not want markup lines
attached.

Sales
Quotation

SQ_MarkupType.csv List Random A list of markup types to use
during testing.

Sales
Quotation

SQ_Quantity.csv List Random The quantity to use for items in
a sales quotation.

Sales
Quotation

SQ_InventDim.csv List Random A list of locations where items
are present.

Sales
Quotation

SQ_Usermanagement.csv List Random Domain credentials of the test
users to use to create a sales
quotation.

Ledger Journal LJ_TransText.csv List Random The transaction text to use.

Ledger Journal LJ_Amount.csv List Random The amount to use.

Ledger Journal LJ_Currency.csv List Random The currency to use.

Ledger Journal LJ_LineCount.csv List Random The number of lines to create.

Ledger Journal LJ_usermanagement.csv List Random Domain credentials of the test
users to use to create a ledger
journal (LJ).

Ledger Journal LJ_OffsetAccount.csv List Random The account number for the
credit account in the LJ
transaction.

Ledger Journal LJ_LedgerAccount.csv List Random The account number for the
debit account in the LJ
transaction.

Ledger Journal LJ_JournalName.csv List Random The type of journal, such as
GenJrn or Trv.

Item Arrival IA_Invents.csv List Random Inventory dimension–related
columns: From and To
LocationId and SiteId.

Item Arrival IA_JournalName.csv List Random Journal names to use while
creating item arrivals.

Item Arrival IA_usermanagement.csv List Random Domain credentials of the test
users to use to create an item
arrival.

Free Text
Invoice

FTI_OrderAccounts.csv List Random Customer accounts to use while
creating a free text invoice.

13
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Scenario Data source File type Access type Description

Free Text
Invoice

FTI_MarkupTrans.csv List Random A list of markup types to use
during testing.

Free Text
Invoice

FTI_LineCount.csv List Random The number of item lines to
create.

Free Text
Invoice

FTI_LedgerAccount.csv List Random Account numbers to use.

Free Text
Invoice

FTI_Quantity.csv List Random The quantity to use for lines.

Free Text
Invoice

FTI_MarkupType.csv List Random The number of markup lines to
create under item lines. Use 0 if
you do not want markup lines
attached.

Free Text
Invoice

FTI_usermanagement.csv List Random Domain credentials of the test
users to use to create a free
text invoice.

Stock Transfer ST_LineCount.csv List Random The number of lines in a stock
transfer.

Stock Transfer ST_Items.csv List Random Items to use.

Stock Transfer ST_JournalName.csv List Random Journal names to use.

Stock Transfer ST_InventDim.csv List Random Inventory dimension–related
columns: From and To
LocationId and BatchId.

Stock Transfer ST_usermanagement.csv List Random Domain credentials of the test
users to use to create a stock
transfer.

Project
Quotation

PQ_BusRelAccounts.csv List Sequential Business relation accounts to
use.

Project
Quotation

PQ_CustAccounts.csv List Random Customer accounts to use.

Project
Quotation

PQ_Quantity.csv List Random The quantity to use.

Project
Quotation

PQ_MarkupType.csv List Random Markup types to use.

Project
Quotation

PQ_CustomerGroupId.csv List Random Not in use.

Project
Quotation

PQ_LineAmount.csv List Random The amount to use on lines.

Project
Quotation

PQ_LinePropertyId.csv List Random Values for the LinePropertyId
field.

Project
Quotation

PQ_ProjTransCode.csv List Random ProjTransCodes to use.

Project
Quotation

PQ_Items.csv List Random Items to use while creating
lines.

14
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Scenario Data source File type Access type Description

Project
Quotation

PQ_LineCount.csv List Random The line count to use.

Project
Quotation

PQ_Markup.csv List Random The number of markup lines to
create under item lines. Use 0 if
you do not want markup lines
attached.

Project
Quotation

PQ_ProjGroup.csv List Random The project group to use.

Project
Quotation

PQ_Model.csv List Random The model ID to use.

Project
Quotation

PQ_Transaction_Category.csv List Random The combination of
ProjTransType and
ProjCategoryId to use while
creating lines.

Project

Quotation

PQ_usermanagement.csv List Random Domain credentials of the test

users to use to create a project
quotation.

Project
Quotation

PQ_InventDim.csv List Random Inventory dimension–related
columns: From and To
LocationId and BatchId.

Enterprise
Portal

EP_Expense_Usermanagement.
csv

List Random Domain credentials of the test
users to use to create Enterprise
Portal.

Enterprise
Portal

EP_Host.csv List Random Names of machines where
Enterprise Portal is installed.

Enterprise
Portal

EP_PurchReq_Usermanagement
.csv

List Random Domain credentials of the test
users to use to create an
Enterprise Portal purchase
request.

Enterprise
Portal

EP_ShoppingCart_Usermanage
ment.csv

List Random Domain credentials of the test
users to use to create an
Enterprise Portal shopping cart.

Enterprise
Portal

EP_TimeSheet_Usermanagemen
t.csv

List Random Domain credentials of the test
users to use to create an
Enterprise Portal timesheet.

Application
Integration
Framework

AIF_Customer.csv Range Random The list of customers using
Application Integration
Framework.

Application
Integration
Framework

AIF_Host.csv List Random The name of the Application
Object Server (AOS) machine
where Application Integration
Framework is installed.

Application
Integration
Framework

AIF_Items.csv List Random Items to use while creating a
sales order by using Application
Integration Framework.

15
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Scenario Data source File type Access type Description

Application
Integration
Framework

AIF_usermanagement.csv List Random Domain credentials of the test
users to use to create
Application Integration
Framework.

CREATING A NEW LOAD TEST

A load test defines a mix of unit tests and/or web tests that is executed by using multiple users. By defining a load

test, you can simulate the load created by multiple users accessing a server at the same time.

For information about how to create a new load test, see http://msdn.microsoft.com/en-us/library/ff406964.

MODIFYING THE TESTCONTEXT PARAMETERS

TestContext parameters are available in the XML load test configuration files included in the Benchmark SDK

MainTest folder. The names of the load test files are in the form <testname>.loadtest. Double-click a file in

Solution Explorer to open it an editor pane, where the XML is rendered graphically. Locate the Context Parameters

node. Click a parameter to display or modify its properties in the Properties pane. These context parameters

should be present in the load test file for the Benchmark SDK to work. The following screen shot shows some of

the context parameters.

A brief description of a few of the currently used parameters follows:

 LogFileName –Specifies the path along with the file name where the log file is created on the agent machines

during the test run. Change this parameter if the log file needs to be saved in a different location or with a

different name. The file contains test result details of various operations in the scenario being tested. These

http://msdn.microsoft.com/en-us/library/ff406964

16
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

rows are logged from the code. Look for calls to Logger.log(<params>) in the code. This can be changed to log

data that you are interested in.

 Email – Specifies who should be notified via email when various test events occur, such as when a test is

aborted or completed.

 Company – Specifies the Microsoft Dynamics AX company (data area ID) in which the test needs to be run.

 UseThinkTime – Indicates whether the think time range (circled in red in the screen shot) specified for each

transaction should be used (UseThinkTime = true) or ignored (UseThinkTime = false). Think time refers to the

amount of time that the fictitious user spends “thinking” after completing the current operation and before

starting the next operation. A test might have more than one operation. Adjust the think time minimum and

maximum values (in milliseconds) according to the pacing required. For example, if you use the following

formula, the minimum and maximum think time can be calculated with variance of 10 seconds to randomize.

You can vary this based on your needs.

Think time max (in seconds) = {[Pacing in seconds] / [Number of operations]} + 5

Think time min (in seconds) = {[Pacing in seconds] / [Number of operations]} - 5

 SessionManager_UserIncrement – Indicates how many Microsoft Dynamics AX user sessions need to be

created and added to the session pool when there is a request to Session Manager for a session, but there is

no free session.

 SessionManager_MaxLogonUsageCount – Indicates how many times a session in the session pool is used

before it is recycled. Session Manager keeps track of how many times a session has been given to virtual users.

 LoadUserFromCommonFile – Microsoft Dynamics AX sessions are generally created by using random user

credentials specified in the UserManagement.csv data source file. The LoadUserFromCommonFile flag can

have a value of true or false. True indicates that the users are created from UserManagement.csv. False

indicates that a scenario-specific user management data source file, such as SO_UserManagement.csv, is used,

based on the tests that are executed.

For example, in a scenario where sales orders should be handled by users who are assigned the Sales Clerk

role in Microsoft Dynamics AX, and purchase orders should be handled by users with the Receiving Clerk role,

we have to specify users in SO_userManagement.csv and PO_UserManagement.csv, respectively, and set the

LoadUserFromCommonFile context property to false. The Benchmark SDK then creates Microsoft Dynamics

AX user sessions in the following ways, based on the LoadUserFromCommonFile context parameter value:

 If LoadUserFromCommonFile = True, users are loaded from the UserManagement.csv file.

 If LoadUserFromCommonFile = False, users are loaded from a scenario-specific user management file,

such as SO_UserManagement.csv or PO_UserManagement.csv.

17
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Additionally, there are context parameters to maintain the scenario-specific data source file name and transaction-

related think times.

Note: The think time range for all scenarios except EP (Enterprise Portal) scenarios are represented in terms of

milliseconds in the context parameter. EP scenario time context parameters are represented in seconds.

You can add your custom context parameters and use them in the test. For more information, see

http://msdn.microsoft.com/en-us/library/ff406971(v=vs.100).aspx.

MODIFYING THE TEST RUN SETTINGS

Test run settings are used to control various aspects or characteristics of the test. You can specify the mix of test

scenarios to execute, the user load pattern, the duration, and other parameters of the test run.

Test run parameters are available in the XML load test configuration files included in the Benchmark SDK MainTest

folder. The names of the load test files are in the form [testname].loadtest. Double-click a file in Solution Explorer

to open it an editor pane, where the XML is rendered graphically.

Detailed information about test run settings is available at http://msdn.microsoft.com/en-

us/library/dd997834(v=vs.100).

The following run settings need to be checked before you execute any test.

http://msdn.microsoft.com/en-us/library/ff406971(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd997834(v=vs.100)
http://msdn.microsoft.com/en-us/library/dd997834(v=vs.100)

18
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Test scenario mix

In designing the test mix, select the scenarios that need to be executed and the percentage of total load that each

scenario should carry.

For more information about the test mix in a load test, see http://msdn.microsoft.com/en-

us/library/ms182576(v=vs.100).aspx.

User load pattern

The user load pattern specifies how users are loaded during the test run. Load pattern selection depends on the

test goal, and properties should be adjusted accordingly.

For more information about user load pattern settings in a load test, see http://msdn.microsoft.com/en-

us/library/dd997551(v=vs.100).

http://msdn.microsoft.com/en-us/library/ms182576(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms182576(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd997551(v=vs.100)
http://msdn.microsoft.com/en-us/library/dd997551(v=vs.100)

19
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

CONFIGURING ENTERPRISE PORTAL

Enterprise Portal is a web-based interface for Microsoft Dynamics AX. You can configure Enterprise Portal for use

by the Visual Studio load test framework. Visual Studio includes support for making requests to Enterprise Portal.

The following diagram shows a sample test configuration for Enterprise Portal. Note that the number of hosts

varies, depending on requirements.

The following steps are involved in configuring Enterprise Portal for running benchmarks:

1. Set up Enterprise Portal.

1. Assuming that you have set up the database server, install the required number of Microsoft Dynamics AX

Application Object Server instances.

2. Install Enterprise Portal on the required number of machines.

20
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

3. Ensure that these sites can be accessed from the machines that have agents installed.

2. Create test users.

1. Create the domain test users within Microsoft Dynamics AX.

Created domain test users are used during the load test.

The list of users should be maintained in UserManagement.csv or the corresponding EP scenario

EP_<scenarioname>_UserManagement.csv file.

2. If the scenario being tested requires employees, create test employees in Microsoft Dynamics AX, and

map them to domain users.

3. Configure test settings.

1. Add the Enterprise Portal–related test method to the load test’s test mix options in the .loadtest file.

Open the .loadtest file, and check for or add the required EP_<ScenarioName> in the test mix.

2. Go to the context parameters in the run settings. Check for all common context parameters, such as

LogFileName, Company, and UseThinkTime, and all Enterprise Portal–related context parameters.

3. In the EP_Host.csv file, change the host name to the machine name that Enterprise Portal is configured

on.

4. Make necessary changes to transaction think time, such as EP_TimeSheetMinThinkTimeInSec,

EP_TimeSheetMaxThinkTimeInSec, EP_ExpenseMinThinkTimeInSec, and EP_ExpenseMaxThinkTimeInSec.

Note: The transaction think times are represented in seconds by WebTestRequest. Therefore, large values

in the transaction think time context parameters will delay responses from Enterprise Portal.

5. Modify test data–related information in the DataSource folder, if required.

For further details, see the ”Enterprise Portal” section under ”Running the Benchmark SDK.”

CONFIGURING BATCH SERVERS

Batch servers can be used to perform periodic tasks without assistance from the client. You define the conditions

and actions to take, and also the schedule on which the batch servers process the work.

See http://technet.microsoft.com/en-us/library/gg731831.aspx for information about how to configure a batch

server.

CONFIGURING APPLICATION INTEGRATION FRAMEWORK

http://technet.microsoft.com/en-us/library/gg731831.aspx

21
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Application Integration Framework (AIF) is a set of services that enable Microsoft Dynamics AX to act as a web

services platform. AIF installation comes as an integrated part of Microsoft Dynamics AX 2012 installation.

1. After Microsoft Dynamics AX installation is completed, check for the Initialization Checklist by navigating to

Administration > Setup > Checklists.

2. Click Set up Application Integration Framework to configure AIF.

22
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

After AIF configuration is completed, the Set up Application Integration Framework options appears as

follows.

3. Generate references and the Sales Order web service.

4. Create a Basic InBound Port service in AIF. For information, see http://msdn.microsoft.com/en-

us/library/hh496439.aspx.

5. After the service is deployed successfully, the service URI can be checked from inbound ports.

http://msdn.microsoft.com/en-us/library/hh496439.aspx
http://msdn.microsoft.com/en-us/library/hh496439.aspx

23
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Navigate to System administration > Area page > Setup > Services And Application Integration Framework >

Inbound Ports.

The WSDL URI is also used to create a corresponding service reference and to access the service methods in

outside worlds.

RUNNING THE BENCHMARK SDK

With the Microsoft Dynamics AX 2012 Benchmark SDK, you can test the various components of Microsoft

Dynamics AX. The Benchmark SDK is designed to test some scenarios across all the following components:

 Rich client

 Enterprise Portal

 Application Integration Framework

RICH CLIENT

Rich client simulation uses the Managed Interop Layer (MIL) to simulate the work that is done by the Microsoft

Dynamics AX rich client. It is best to use the proxy to generate AOT type interfaces as C# classes, because these

classes typically follow the same business logic that is applied by the client.

You can use one of the included unit tests, or you can create your own unit test that uses the

Microsoft.Dynamics.AX.ManagedInterop.dll (MIL) assembly to make calls to Application Object Server. When your

C# code constructs an instance of a proxy, the system simultaneously constructs an instance of the corresponding

class inside the Microsoft Dynamics AX system.

24
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

ENTERPRISE PORTAL

Enterprise Portal can be tested by modifying the Benchmark SDK and adding the web test to your test mix.

Add all required fields to the context parameter, as shown in the following screen shot.

Make the necessary data changes to all common and Enterprise Portal scenario-specific data source files.

For example, the EP_HostDataSource context parameter points to the EP_Host.csv file. In this .csv file, we have to

mention the machine names on which EP is installed. Likewise, if the LoadUserFromCommonFile context

parameter is set to False, the Benchmark SDK picks users from a file (EP_TimeSheet_Usermanagement.csv) that

the EP_TimeSheet_UserManagementDataSource context parameter points to for the EP_TimeSheet transaction.

The warm-up duration is the amount of time the test should wait before starting. This is required to load users

(that is, requests) to the allowed maximum. After the warm-up duration, new users cannot be loaded. The warm-

up duration should be calculated properly, so that all the users are loaded.

25
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

To stop scenario execution during the warm-up duration, set Disable During Warmup to False in the load test

ccenario properties.

The warm-up duration and the run duration are specified in the load test file’s Run Settings Properties window, as

shown in the following screen shot.

The load test file can be used to map counter sets to various machine roles. Create a counter set by grouping a set

of perfmon counters in the Load Test Counter Set option. Assign this counter set to a machine to define its role

and to capture the corresponding perfmon counter values. For example, if your Enterprise Portal machine is

named EPMachine1, you can map the EP Machine role to EPMachine1.

26
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

When all the parameters have been set, right-click Test Mix, and then select Run Test to start the test.

For more information about counter set creation and counter set mappings, see http://msdn.microsoft.com/en-

us/library/ms404695(v=vs.100).aspx.

For more information about running a load test, see http://msdn.microsoft.com/en-

us/library/ms182590(v=vs.100).aspx.

APPLICATION INTEGRATION FRAMEWORK

1. Follow the procedure in the “Configuring Application Integration Framework” section.

2. Create a unit test class that performs actions on the web service.

http://msdn.microsoft.com/en-us/library/ms404695(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms404695(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms182590(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms182590(v=vs.100).aspx

27
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

3. Make the necessary changes to AIF context parameters and data source files.

Examples

 The AIF_DomainName context parameter should be assigned to a domain value on which AIF

configuration has been completed. This domain is later used by all users to take advantage of the AIF

service functionalities.

 The AIF_ItemDataSource context parameter points to AIF_Items.csv, which contains a list of items that

are used for sales order line creation.

 The AIF_HostDataSource context parameter points to AIF_Host.csv file, which maintains the host name or

a list of host names on which AIF has been configured.

 Users are loaded from AIF_Usermanagement.csv file only if the LoadUserFromCommonFile common

context parameter is set to False. Otherwise, users are loaded from the Usermanagement.csv file, which

is referenced by the UserManagementDataSource context parameter.

28
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 The AIF_MinThinkTimeRange and AIF_MaxThinkTimeRange context parameters contain a time, in

milliseconds, that is used to calculate random think time.

 The AIF_ServiceListenURI context parameter value indicates the service URI that the client uses to

communicate with the AIF service. Here, % is replaced by the AIF host name. Port number 8201 remains

constant for all inbound services. Other values change, depending on the WSDL URI generated by an

inbound service.

 The AIF_ServiceURI context parameter value refers to the WSDL URI that is generated when an inbound

service is deployed. Here, % is replaced by the host name, which is read from the AIF_HostDataSource

context parameter.

Note: The service name mentioned in AIF_ServiceListenURI and AIF_ServiceURI context parameter need to be

replaced by the service name, given by end user. If my service name is ‘SalesService’, then the

AIF_ServiceListenURI value will be “net.tcp://%:8201/DynamicsAx/Services/SalesService”. Similarly

AIF_ServiceURI will contain a value as “http://%:8101/DynamicsAx/Services/SalesService”.

During AIF runs, the AOS machine and SQL machine are used. Therefore, we collect performance counters on

these two machines. For more information about counter set creation and counter set mappings, see

http://msdn.microsoft.com/en-us/library/ms404695(v=vs.100).aspx.

http://msdn.microsoft.com/en-us/library/ms404695(v=vs.100).aspx

29
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Set all the preceding parameters properly before starting the test. Then right-click Test Mix, and select Run Test to

start the test.

For more information about running a load test, see http://msdn.microsoft.com/en-

us/library/ms182590(v=vs.100).aspx.

DEVELOPING A CUSTOM BENCHMARK

In this section, we walk through the process of creating a benchmark wrapper for a scenario. At a high level, the

following steps are involved:

1. Trace the scenario you want to simulate. It is a good idea to take a trace from a single machine that has both

the Microsoft Dynamics AX client and the application server installed.

2. Import the trace file into the Microsoft Dynamics AX 2012 Trace Parser. This provides all the client-server calls

for the scenario that has been traced.

3. Analyze the trace to find the calls that are made by the user session (client) to the server, and write an X++ job

that has those calls. Run the job to see whether the output is as expected.

4. Trace the X++ job execution, and compare the server-side calls from this job and the trace collected in the step

1. Use the comparison tool within Trace Parser.

5. Fix the job if required to reduce the differences, and repeat the comparison until the job and the trace are

reasonably close.

6. Convert the lines in the job to a C# unit test in the wrapper, and parameterize any key test input. This test,

when run, should simulate same kind of load on your AOS and database as users working on Microsoft

Dynamics AX.

http://msdn.microsoft.com/en-us/library/ms182590(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms182590(v=vs.100).aspx

30
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Let’s look at key steps in detail.

The trace captures every form-level, class-level, and database-level call that occurs in the client-server session

being traced. The goal is to simulate the calls that AOS is getting from the client during the scenario. The trace

should be analyzed to figure out such calls and the order in which they should be called to achieve the same results

as when you run the scenario manually by using the Microsoft Dynamics AX client.

Mostly, we start from the client session, and the method calls that are returned in the RPC are likely candidates to

go into the wrapper. The methods that constitute the wrapper of any scenario are generally a main node in the

trace file (if it does not have any form, UI, or client-side code) or the successive qualifying method at the next

highest level in the same call stack.

There are few important rules that help us find the appropriate calls needed to simulate our scenario. They help us

decide whether a call needs to go into the wrapper.

PRINCIPLES FOR IDENTIFYING WHAT GOES INTO THE WRAPPER

 In most cases, whenever we see a table (any table from the AOT) or a class (some classes that are marked to

run on the server), we can consider calling it, even if it is many levels above the method that generated the

actual RPC.

Example 1

In the following call tree, SalesTable::initValue() is the call chosen for the wrapper, even though

xRecord::initValue() is the call that actually generated the RPC.

Wrapper code:

31
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Note: In the preceding code snippet, we can get the SalesTable object in the wrapper code because of the

Microsoft Dynamics AX Benchmark Proxy DLL (the MS.Dynamics.AX.Benchmark.SDK.Proxies project in the

Microsoft Dynamics AX 2012 Benchmark SDK). For more information about creating and using the Microsoft

Dynamics AX Benchmark Proxy, see the “Using the Microsoft Dynamics AX Benchmark Proxies to write

wrapper code” section.

Example 2

32
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

In the following call tree, SalesTable::ValidateField() and SalesTable::ModifiedField() are the calls chosen for

the wrapper.

Wrapper code:

 Some method calls can be ignored: Certain method calls from the trace file are not part of the scenario, such

as SysTraceCockpit::*, WinAPI::getComputerName (), and metadata calls that fall under the ServerUtilLoad

node. These calls should not go into the wrapper and can therefore be ignored.

33
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

For example, refer to the following calls.

 Some methods cannot be called from the wrapper: No form-level and UI-level calls can be called from the

wrapper, because .NET Business Connector does not support such calls. For such a call, we need to move

ahead to find the next qualified call among its child calls. If there is no call in the tree that can be taken, we

can ignore this call and move ahead.

Case 1: Form-level calls where no suitable child calls are present—that is, without RPCs

To identify these calls, we can look for the RPC call value for each of these calls.

34
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

If there are no RPCs associated with the calls, which indicates a purely client-side task that does not have

much impact on the scenario, we do not consider such calls for the wrapper.

Case 2: Form-level calls where one or more of the children can be picked—that is, with RPCs

If a method call generates an RPC, this implies that the call results in some server activity and may need to go

into the script. The call tree corresponding to this method needs to be analyzed to see whether any valid

method is present that can be a part of the wrapper.

35
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

For example, in a Sales Order scenario, the SalesTable::SysSetupFormRun::task is a potential call for analysis,

because it results in 35 RPCs.

Going further in the call-tree, we find that the SalesParameters::numRefSalesId() and

NumberSequenceTable::find () calls are the ones that go into our Sales Order wrapper.

36
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

The following code snippet from the Sales Order wrapper corresponds to the preceding calls from the trace.

Method calls that have unqualified method parameters: When a client method that is a part of the trace takes

parameters such as the FormDataSource object and the FormRun object, which cannot be passed through our

wrapper code, we need to move deeper into the call tree to pick the next qualifying method.

For example, SalesTableType_Sales::numberSeqFormHandlerSalesId() is a client-side call that contains the

parameters SysSetupFormRun and FormDataSource, which cannot be passed through the wrapper.

Therefore, the call SalesParameters::numRefSalesId() is included in the wrapper to keep the fetching

numberSequence logic for the scenario.

37
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 Direct SQL calls: Some server RPCs, such as ServerNext may result from a user action, such as searching by

pattern for customers starting with E*. Such SQLs can be called directly from the wrapper.

 Modularization and optimization: In a trace, if you see that any section is repeated a number of times, and the

same set of calls appears repeatedly, you can optimize or modularize the code, and call it as needed.

For example, in the Sales Order scenario, the flow of calls in posting the picking list, packing slip, and invoice is

the same, except the Document status parameter varies. In such cases, while creating a wrapper, we can

group the logic and pass appropriate parameters to achieve the intended purpose.

38
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Example

In the Sales Order creation and posting scenario, SalesFormLetter_Main is called three times each for posting

picking list, packing slip and invoice, based on whether the value of Document status is Picking List, Packing

Slip, or Invoice.

 Methods with unsupported arguments: If a method results in a number of RPC calls, but calling the parameter

for such a method through the MIL is not supported, the entire code in the method needs to be included in

the wrapper. For example, the main method has arguments as parameters that are invoked with the FormRun

object, which is not possible with wrappers. In such cases, we include the logic in the main method in the

wrapper and make a call to it according to its position in the flow.

39
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

By following the preceding principles for each of the calls encountered in the trace, we can make the wrapper for

any scenario in Microsoft Dynamics AX, provided that we have the trace file for the scenario.

Furthermore, you can look at existing example scenarios, add a scenario to the Benchmark SDK, and run it as a load

test with multiple users.

USING THE MICROSOFT DYNAMICS AX BENCHMARK PROXIES TO WRITE WRAPPER CODE

The Microsoft Dynamics AX Benchmark Proxy library includes type-safe interfaces of AOT types in C#. When your

C# code constructs an instance of a proxy, the system simultaneously constructs an instance of the corresponding

class inside the Microsoft Dynamics AX system. The two primary responsibilities of the Microsoft Dynamics AX

Benchmark Proxy are as follows:

 Integrating with Visual Studio 2010

 Generating proxy-managed code for Microsoft Dynamics AX classes, tables, and enumerations

The following is a walkthrough of Microsoft Dynamics AX Proxy generation and its use.

Prerequisites

 Microsoft Dynamics AX with Visual Studio Tools

40
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 Visual Studio 2010 Ultimate Edition

For more information about creating a Microsoft Dynamics AX Proxy project, see http://msdn.microsoft.com/en-

us/library/gg889200.aspx.

Notes

 If you want to add any customized code to any Microsoft Dynamics AX type, make the necessary changes to

the object in the AOT. Then add that Microsoft Dynamics AX type to a Class Library project to get the

customized options.

 If any customized Microsoft Dynamics AX type doesn’t appear in Application Explorer, right-click the AOT, and

then click Refresh All.

The following are sample code snippets generated by the Microsoft Dynamics AX Proxy library.

The first snippet is a wrapper-generated C# class definition for a Sales table in Microsoft Dynamics AX. The Sales

table inherits from the Common class, which is the parent class for Microsoft Dynamics AX tables.

namespace MS.Dynamics.AX.Benchmark.SDK.Proxies {

 using Microsoft.Dynamics.AX.ManagedInterop;

 using System.Diagnostics.CodeAnalysis;

 /// <summary>

 /// The SalesTable table contains all sales order headers regardless of whether they
have been posted.

 /// </summary>

 [TableAttribute()]

 [SuppressMessage("Microsoft.Naming", "CA1711:IdentifiersShouldNotHaveIncorrectSuffix")]

 [SuppressMessage("Microsoft.Naming", "CA1724:TypeNamesShouldNotMatchNamespaces")]

 public partial class SalesTable : Common {

 static string cTableName = "SalesTable";

 [SuppressMessage("Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")]

 public SalesTable() :

http://msdn.microsoft.com/en-us/library/gg889200.aspx
http://msdn.microsoft.com/en-us/library/gg889200.aspx

41
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 base(new XppArtifactName(cTableName)) {

 }

 [SuppressMessage("Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")]

 public SalesTable(Microsoft.Dynamics.AX.ManagedInterop.Record axRecord) :

 base(axRecord) {

 }

 [SuppressMessage("Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")]

 protected SalesTable(Microsoft.Dynamics.AX.ManagedInterop.XppArtifactName
tableName) :

 base(tableName) {

 }

The next snippet shows an example of a find method where a Sales table record is selected for update. This find

method takes two arguments: salesId, and a Boolean true or false value to indicate whether the record is available

for update. The method is basically an interface that calls Microsoft Dynamics AX by using the Managed Interop

Layer.

[SuppressMessage("Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")]

 public static SalesTable find(string salesId, bool _forUpdate) {

 if (Microsoft.Dynamics.AX.ManagedInterop.Record.IsILSession()) {

 SalesTable ret_ = null;

 object ILObject =
Microsoft.Dynamics.AX.ManagedInterop.Record.CallXppStaticMethodinIL(((string)(cTableName)),
"find", salesId, _forUpdate);

 ret_ =
((SalesTable)(CReflectionCallHelper.GetMILProxyFromILObject(ILObject,
typeof(SalesTable))));

 return ret_;

 }

 else {

 return

42
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

((SalesTable)(SessionProviderFactory.Instance.GetSession().CallStaticRecordMethod(((string)
(cTableName)), "find", typeof(SalesTable), salesId, _forUpdate)));

 }

 }

This next snippet shows an example of how to utilize the preceding static method on the Sales table to update a

record. Although the proxy dynamics are different, the users do not need to worry about the internal

representation and can call the static method just as they would call a static method in X++.

MS.Dynamics.AX.Benchmark.SDK.Proxies.SalesLine salesLine = null;

 try

 {

 this.userSession.TTSBegin();

 this.salesTable = SalesTable.find(salesId, true);

 salesLine = new MS.Dynamics.AX.Benchmark.SDK.Proxies.SalesLine();

 salesLine.ExecuteStmt("Select * from %1 where %1.SalesId == '" + salesId +
"'");

 this.SalesTableForm_Element_AutomaticTotalDiscount();

 if (this.salesTable.Touched == NoYes.Yes)

 {

 this.salesTable.Touched = NoYes.No;

 this.salesTable.validateWrite();

 this.salesTable.update();

 }

 this.userSession.TTSCommit();

 SalesTableSalesLineForm.displayMethods(0, salesLine);

 this.salesTable.checkIfUpdate();

 }

43
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 catch (SalesAndDistributionException ex)

 {

 this.userSession.TTSAbort();

 throw new
SalesAndDistributionException(SalesAndDistributionExceptionMessages.SalesOrderPostingMakeEx
ception, ex);

 }

WRITING A UNIT TEST BY USING THE CODE GENERATED FROM THE PROGRAMMING MODEL

PROXY

You can define your own unit test utilizing the Programming Model Proxy, and create custom scenarios that fit

your implementation and data. After you have generated the proxy, you can define a unit test that uses this

custom code.

Note: Your code should always implement IDisposable and clean up all used connections to avoid memory leaks.

In our test class, you need to declare at least one TestMethod. Add a reference to the Microsoft Dynamics AX

Proxy class library to utilize the Microsoft Dynamics AX types in TestMethod.

Additionally, you should keep a reference to the Microsoft.Dynamics.AX.ManagedInterop assembly to use the

Session object. Session objects are required to maintain separate sessions for each logged-on user. See

http://blogs.msdn.com/b/x/archive/2011/09/20/net-interop-to-x-when-x-runs-as-cil.aspx for more information

about utilizing Microsoft Dynamics AX Proxy in VSTS 2010.

CREATING AND INITIALIZING A LOAD TEST

To run code at different times while the load test is running, we can use a load test plug-in.

See http://msdn.microsoft.com/en-us/library/ee923683(v=vs.100).aspx and

http://blogs.msdn.com/b/slumley/archive/2009/04/10/load-test-plug-ins.aspx for information about creating and

utilizing a load test plug-in in VSTS 2010.

We need to delegate these events in the initialize method, as shown in the following example. In our Benchmark

solution, these events are used to get values from a data source in the initialize method, creating a session and

adding it as a run-time context parameter to the load test in a LoadTestStarting event, and disposing of all of them

in a LoadTestFinished event.

http://blogs.msdn.com/b/x/archive/2011/09/20/net-interop-to-x-when-x-runs-as-cil.aspx
http://msdn.microsoft.com/en-us/library/ee923683(v=vs.100).aspx
http://blogs.msdn.com/b/slumley/archive/2009/04/10/load-test-plug-ins.aspx

44
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

1. Override the initialize method.

public void Initialize(LoadTest loadTest)

{

this.loadTest = loadTest;

this.loadTest.TestStarting += new
EventHandler<TestStartingEventArgs>(loadTest_TestStarting);

this.loadTest.LoadTestAborted += new
EventHandler<LoadTestAbortedEventArgs>(loadTest_TestAborted);

this.loadTest.LoadTestFinished += new EventHandler(loadTest_LoadTestFinished);

InitializeDataSources();// This method is created by us in which we had logic to
 //initialize the values from files in Data source folder

}

2. Override the events mentioned in the initialize method.

private void loadTest_TestStarting(object sender, TestStartingEventArgs e)

 { string strCurProperty = string.Empty;

 //Copy all the load test context properties to test properties

 foreach (string key in this.loadTest.Context.Keys)

 {

 e.TestContextProperties.Add(key, this.loadTest.Context[key]);

 }

 ///Start of Common Context Parameter Reading

 try

 { //Read all common context parameters

 strCurProperty = "LogFileName";

 logFileName = this.loadTest.Context[strCurProperty].ToString();

 strCurProperty = "Company";

 companyName =this.loadTest.Context[strCurProperty].ToString();

45
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 strCurProperty = "SessionManager_UserIncrement";

 if (this.loadTest.Context.ContainsKey(strCurProperty))

 sessionManager_UserIncrement =
int.Parse(this.loadTest.Context[strCurProperty].ToString());

 else

 {

 sessionManager_UserIncrement = 10; //default to 10 if the parameter is
not found

e.TestContextProperties.Add("SessionManager_UserIncrement",
sessionManager_UserIncrement);

 }

 strCurProperty = "SessionManager_MaxLogonUsageCount";

 if (this.loadTest.Context.ContainsKey(strCurProperty))

 sessionManager_maxLogonUsageCount =
int.Parse(this.loadTest.Context[strCurProperty].ToString());

 else

 {

 sessionManager_maxLogonUsageCount = 30; //This is a rough value

e.TestContextProperties.Add("SessionManager_MaxLogonUsageCount",
sessionManager_maxLogonUsageCount);

 }

 strCurProperty = "UseThinkTime";

 useThinkTime = this.loadTest.Context[strCurProperty].ToString();

 if (!bool.TryParse(useThinkTime, out fUseThinkTime))

 {

 fUseThinkTime = false;

 }

 strCurProperty = "fUseThinkTime";

 if (this.loadTest.Context.ContainsKey(strCurProperty))

 fUseThinkTime =
Convert.ToBoolean(this.loadTest.Context[strCurProperty].ToString());

 else

46
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 {

 e.TestContextProperties.Add("fUseThinkTime", fUseThinkTime);

 }

 ///

 ///End of Common Context Parameter Reading

 ///

 }

 catch (System.Exception ex)

 {

 throw new LoadTestPluginException(String.Format(null,
LoadTestPluginExceptionMessages.MissingContextKeyException, strCurProperty), ex);

 }

…

 }

public void loadTest_LoadTestFinished(object sender, EventArgs e)

 {

 //Dispose off all the objects

 this.markupTransactionDistributionTable.Dispose();

 this.customerDistributionTable.Dispose();

 this.itemDistributionTable.Dispose();

 this.lineCountDistributionTable.Dispose();

 }

public void loadTest_LoadTestAborted(object sender, EventArgs e)

 {

 //Dispose off all the objects

 this.markupTransactionDistributionTable.Dispose();

 this.customerDistributionTable.Dispose();

47
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 this.itemDistributionTable.Dispose();

 this.lineCountDistributionTable.Dispose();

 }

3. In the test project, right-click, and then select Add Reference. On the Projects tab, select the Class Library

project in which plug-in code has been implemented. Click OK.

48
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

4. Open the load test, and select the top node of the load test. Right-click it, and then select Add Load Test Plug-

in. Select your plug-in class in the dialog box.

PASSING TESTCONTEXT PARAMETERS TO THE UNIT TEST

It is a good practice to define a default value for any parameter that you are reading from the context. In this way,

the unit test can still execute when it is not being run within a load test. In this example, the sleep value is set to

1000. Then the test checks the context for a parameter called SleepTime. If it exists, sleep is set to the value of this

parameter.

1. Create the load test, and add the preceding unit test.

49
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

2. Add context parameters. Load test context parameters are set on the Run Settings node in the load test.

Simply click the run setting you want to add the parameter to, and then select Add Context Parameter. Then

set the name and value for the context parameter. In this example, set the parameter name to SleepTime and

the value to 1000.

3. Pass values to the unit test context. Now the load test context has the parameter, but these values are not

automatically passed to the unit test context. This can be accomplished with a simple load test plug-in. Load

test plug-ins provide a way for you to hook your own code into the load test framework. A number of different

events are exposed. For more detailed information about load test plug-ins, see

http://msdn.microsoft.com/en-us/library/ms243153(v=vs.100).aspx.

For information about how to utilize context parameters in a unit test file, see

http://blogs.msdn.com/b/slumley/archive/2006/12/15/passing-load-test-context-parameters-to-unit-

tests.aspx.

4. Set this plug-in as the plug-in that the load test uses by right-clicking the root node of the load test in the

editor and then selecting Add Load Test Plug-In. This opens a dialog box that displays the plug-in we created.

Select this plug-in, and then click OK.

http://msdn.microsoft.com/en-us/library/ms243153(v=vs.100).aspx
http://blogs.msdn.com/b/slumley/archive/2006/12/15/passing-load-test-context-parameters-to-unit-tests.aspx
http://blogs.msdn.com/b/slumley/archive/2006/12/15/passing-load-test-context-parameters-to-unit-tests.aspx

50
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Another thing we can do while developing load test plug-ins is debug them. Place a break point in the code.

Then run the load test under the debugger. The load test toolbar contains a Play button, which contains a

drop-down menu. On this drop-down menu, select Debug Test to start the test run in Debug mode. Another

way to do this is to select the load test in the test view window, and then select Debug Test. This is useful

when writing the plug-ins, to make sure they are working correctly.

WRITING A NEW ENTERPRISE PORTAL UNIT TEST

Here, we discuss creating a web test for a simple Enterprise Portal scenario. First, the sequence of steps involved in

the scenario should be finalized. Then, the same steps should be recorded by using the Web Performance Test

feature in Visual Studio 2010.

Let’s take an example of creating a new expense report. In the following expense report scenarios, we first open

the Expenses page and then create a new expense report by clicking the Create new expense report option. We

then select a few credit card transaction lines, fill in the details for the expense report, and submit it for approval.

Finally, we sign out from the page.

Follow these steps to create an expense report by using Enterprise Portal:

1. To navigate to the Expenses page, open the Enterprise Portal site, and then click the Expenses link on the

Employee services page.

51
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

2. Click the Expenses option to open the Expense reports page. This shows the list of existing expense reports

and also provides the option to create a new expense report.

52
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

3. Click the Expense reports option, as shown in the screen shot, to create a new expense. This opens a page

with a few expense reports selected (the number of lines selected depends on the expense configurations that

were completed before).

4. Click Continue. This opens the Expense report page.

53
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

5. After filling in the details for Expense purpose, click Submit.

This opens the Expense reports Page, which displays the newly created report’s document status.

Click the user name, and then click the Sign Out option.

54
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

To create a web test for the preceding scenario, you need to open Visual Studio 2010 on a system where you can

browse the site. On the Test menu, click New Test to open the following dialog box. Under Templates, select Web

Performance Test, provide a test name, and then select the test project to add the web performance test to. In

this case, we selected Microsoft.Dynamics.Benchmark.TestProject to create a new C# test project and add the

newly created web performance test to it. Depending on your preferences, you can either create a new project or

add the test to an existing project in any supported language.

Click OK, and then, when prompted, enter the name of the test project to create.

55
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

After you click OK, Internet Explorer is opened with Record, Pause, and Stop buttons. Now we can start recording

the sequence of webpage navigations for the scenario we want to create a web performance test for. The

following screen shots show how we record the same steps that we used earlier in this section to create a new

expense report. To avoid unwanted webpage requests, we copy and paste the URL of the Expense reports page as

the first request.

Then press Enter, so that the Employee services page appears.

56
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Next, follow steps 1 through 5 earlier in this section to create an expense report by using Enterprise Portal.

57
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

As you navigate to various webpages, the requests are recorded and can be seen in the left pane, as shown in the

preceding screen shots. At the end of the scenario, click the Stop button. If any dynamic parameters are used in

the sequence of web requests, they are displayed in a dialog box prompting their promotion to web test

parameters. These parameters usually contain random values generated and used by Enterprise Portal for various

reasons. Such values appear in the response of one request, and the same value is used in one or more further

requests. In complex scenarios, the web performance test recording feature might not be able to identify all such

values, and will require manual identification and coding of extraction rules. For more details about creating a web

performance test, extraction rules, and query string parameters, see http://msdn.microsoft.com/en-

us/library/ms182539(v=vs.100).aspx.

To add the load test, right-click the test project, and then select Add > Load Test. The New Load Test Wizard

appears. Provide values based on your load test requirements. See http://msdn.microsoft.com/en-

us/library/dd728098(v=vs.100).aspx for more details about creating a load test.

After you finish the wizard, the load test file is created and added to the project.

Most of the time, a default web test is not sufficient for running tests. Several parameters may need to be

customized:

 The test data to use. There is no need for test data in this sample scenario, but a more complex scenario might

require data—for example:

 Customers are used when a sales order is created.

http://msdn.microsoft.com/en-us/library/ms182539(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms182539(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd728098(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd728098(v=vs.100).aspx

58
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 Expense types are used when expense lines are created.

 Hosts for the site.

 The number of lines being created—for example, the number of item lines in a sales order.

To parameterize these, we need to generate code for this web test and make changes to that code.

To generate the code, open the web performance test, and then click the Generate Code button highlighted in the

following screen shot.

Alternatively, right-click the web performance test, and then select Generate Code, as shown in the following

screen shot.

59
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

When prompted, provide the name of the web test to create.

60
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Then the EP_ExpenseTestCodded.cs file is generated with a few lines of code.

To provide meaningful names to the requests or combine more than one request under one transaction, you can

name them by using the BeginTransaction and EndTransaction methods. For example, the first request in the

preceding scenario is used to open the Employee services page; you can name this request appropriately by

adding BeginTransaction and EndTransaction for the first request, as shown in the following screen shot.

One of the main purposes of generating code is to parameterize certain key variables. To do this, you can add

context parameters in the load test and access them in the code. For a complete discussion of using context

parameters, see the “Passing TestContext parameters to the unit test” section.

Next, to complete the test execution with required users, a host name, or think time, make the necessary changes

to data source files that are related to EP Expense scenario–specific context parameters, as shown in the following

screen shot.

61
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Next, make the necessary changes to the code file to get the context parameters values and use them instead of

hard-coded values, as shown in the following screen shot.

The project is now ready for a load test.

62
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

WRITING A NEW APPLICATION INTEGRATION FRAMEWORK SCENARIO

Application Integration Framework (AIF) is the infrastructure within Microsoft Dynamics AX that lets you expose

business logic or exchange data with other systems. As shown in the following diagram, there are four ways an

external system can interact with AIF:

 Web services

 Message Queuing (also known as MSMQ)

 File system

 Microsoft BizTalk® Server

Of the preceding processes, the Benchmark SDK uses the web services approach to measure the performance of

AIF services.

Here, we discuss creating a unit test for an AIF service. First, you must be aware of the WSDL URI of the AIF

inbound service you use to communicate between the Benchmark SDK and Microsoft Dynamics AX.

Let’s look at an example of creating a unit test for the AIF Sales Order service. In this section, we explain how to

create test scripts for testing the performance of such integrations.

Prerequisites

 The service must be available and deployed in Microsoft Dynamics AX. For more information about services in

Microsoft Dynamics AX, see http://msdn.microsoft.com/en-us/library/gg731810.aspx.

 Collect the WSDL URI for the deployed inbound service.

http://msdn.microsoft.com/en-us/library/gg731810.aspx

63
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

GENERATING A NEW UNIT TEST SCRIPT FOR A LOAD TEST

Make sure that the WSDL URI of the inbound service is accessible or available from the machine where the

Benchmark SDK is opened. If you open the Benchmark SDK in a browser, it opens an XML file with a few method

and property names.

Follow these steps to generate the unit test script for AIF services:

1. Add a new test project to the Benchmark SDK, and name it MS.Dynamics.AX.Benchmark.SDK.AIFWebService.

Create a service reference in order to consume service client classes and methods. For example, Sales Order
Inbound service and the SalesService WSDL URI will appear as
http://AOS:8101/DynamicsAx/Services/SalesService. Right-click the Test Project
(MS.Dynamics.AX.Benchmark.SDK.AIFWebService) -> Add Service Reference. In the Address field, provide the
Inbound Service WSDL URL. Click GO, and then provide a valid Namespace. Click OK.
Note: For more information about service reference, go to http://msdn.microsoft.com/en-
us/library/bb628652(v=vs.100).aspx.
Add a new BasicUnitTest file to the test project and name it AIF_SalesOrderService.cs.

Add context parameters, as needed, to the loadtest file, or modify the data in the AIF scenario that is related

to context parameters. For example, provide the machine name where the AIF configuration is done in the

AIF_Host.csv file that is in the DataSourceFolder. Provide required values for transaction think times to

http://aos:8101/DynamicsAx/Services/SalesService
http://msdn.microsoft.com/en-us/library/bb628652(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb628652(v=vs.100).aspx

64
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

AIF_MinThinkTimeRange and AIF_MaxThinkTimeRange context parameters.

All the serviceclient classes and necessary methods will be accessible inside the Test Project because of

respective service reference. Make necessary calls to service client classes and methods in order to consume

AIF service from Microsoft Dynamics AX. To create a sales order by using the AIF Sales Order service, we have

to write following set of code.

SalesOrderServiceClient salesOrderWS = new SalesOrderServiceClient(binding,
endpointAddress);

 if (salesOrderWS == null)

 {

 return;

 }

 salesOrderWS.ClientCredentials.Windows.AllowNtlm = true;

65
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 System.Net.NetworkCredential cred = new
System.Net.NetworkCredential(userName, password, domainName);

 salesOrderWS.ClientCredentials.Windows.ClientCredential = cred;

salesOrderWS.ClientCredentials.Windows.AllowedImpersonationLevel =
System.Security.Principal.TokenImpersonationLevel.Identification;

 AxdSalesOrder salesOrder = new AxdSalesOrder();

 EntityKey newSalesOrderEntityKey = null;

 AxdEntity_SalesLine[] salesLines = null;

 int numLines =
Convert.ToInt32(TestContext.Properties["AIF_LineCount"].ToString());

 salesOrder.DocPurpose = AxdEnum_XMLDocPurpose.Original;

 salesOrder.SalesTable = new AxdEntity_SalesTable[1] { new
AxdEntity_SalesTable() };

 salesOrder.SalesTable[0].CurrencyCode = "USD";

 salesOrder.SalesTable[0].CustAccount =
TestContext.Properties["AIF_CustAccount"].ToString();

 salesOrder.SalesTable[0].DeliveryDate = new DateTime(2008, 7,
14);

 salesOrder.SalesTable[0].Payment = "N030";

 salesOrder.SalesTable[0].ReceiptDateRequested =
DateTime.Now.Date;

 salesOrder.SalesTable[0].PurchOrderFormNum =
Guid.NewGuid().ToString();

 salesLines = new AxdEntity_SalesLine[numLines];

 for (int i = 1; i < numLines; ++i)

 {

 salesLines[i] = new AxdEntity_SalesLine();

66
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 salesLines[i].ItemId = TestContext.Properties["AIF_ItemId"
+ i.ToString()].ToString();

 salesLines[i].SalesQty =
Convert.ToDecimal(TestContext.Properties["AIF_Qty" + i.ToString()].ToString());

 salesLines[i].SalesUnit = "Pcs";

 }

 salesOrder.SalesTable[0].SalesLine = salesLines;

 testContextInstance.BeginTimer("AOS Hosted
CreateSalesOrder");

 CallContext cc = new CallContext();

 cc.Company = TestContext.Properties["Company"].ToString();

 EntityKey[] entityKeys = salesOrderWS.create(cc,
salesOrder);

 testContextInstance.EndTimer("AOS Hosted
CreateSalesOrder");

 newSalesOrderEntityKey = entityKeys[0];

 salesOrderWS.Close();

2. Add this test method to the .loadtest file test mix option, and start the run. See the “Application Integration

Framework” section for more information about running a test by using the Benchmark SDK.

ADDING TIMERS TO MEASURE PERFORMANCE

To monitor the performance of your custom application, you should track calls to performance-critical sections of

code. This can be done by using the TestContext.BeginTimer and TestContext.EndTimer methods provided by the

Visual Studio load test framework.

[TestMethod]

public void SO_SalesOrder()

{

 TestContext.BeginTimer("Sales Order Header");

 SO_CreateSalesOrderHeader();

 TestContext.EndTimer("Sales Order Header");

 TestContext.BeginTimer("Sales Order Line Item");

67
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 SO_CreateSalesOrderLines(5);

 TestContext.EndTimer("Sales Order Line Item");

}

The name passed in the call to BeginTimer must match the name passed to the call in EndTimer.

For more information, see the following resources:

 http://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.testtools.unittesting.testcontext.begintimer(v=vs.100).aspx

 http://msdn.microsoft.com/en-

us/library/microsoft.visualstudio.testtools.unittesting.testcontext.endtimer(v=vs.100).aspx

PERFORMANCE MONITORING AND REPORTING

By using the following methods, you can view the output of your workload, validate the results, and extract

meaningful statistics for measuring performance.

OPENING TEST RUN DETAILS IN VISUAL STUDIO

The results of a particular run in Visual Studio are saved as a file with a .trx extension. These files are saved in the

TestResults folder of the Microsoft Dynamics AX 2012 Benchmark SDK.

The .trx file can be opened in either of the following ways:

 Go to the TestResults folder (for example, C:\BenchMarkToolKit\TestResults), and select the .trx file of the

required run. Double-click to open the file in a test results window. Double-click the run to view the details.

http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.begintimer(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.begintimer(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.endtimer(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.unittesting.testcontext.endtimer(v=vs.100).aspx

68
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 Click the Open and Manage Results option to see the list of all runs (completed, aborted, and in progress).

Click any result, and then click Open to see the test result details.

CHECKING FOR ERRORS

If the running test throws an error or exception, this is reflected in the count of total tests and failed tests.

Also, the error count is reflected in the test status bar.

69
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Click the error count hyperlink to view the error details.

Click View to look at the stack trace.

70
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

TRANSACTION DETAILS

There are two methods for measuring performance from the Visual Studio user interface. The first lets you view

the details of any transactions that used the TestContext.BeginTimer() and TestContext.EndTimer() methods. The

second approach is to use any performance counters you have added to check for common issues with

performance.

TOTALS AND RESPONSE TIMES

Transaction details, along with response times, can be viewed in the results window while the test is in progress

and after it is completed.

 From the menu bar, go to Test > Windows > Test runs, and then select the required test.

 Go to Test > Windows > Test results, and then double-click the run selected.

 Click the Tables button in the window.

 Select Transactions on the drop-down menu.

All the transactions, along with their counts and response times (the difference between EndTimer and

BeginTimer), are displayed.

Click the Graphs button to get the graphical representation of the user load, tests per second, average test time,

response times, total transactions, and percentage of processor time.

71
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

PERFORMANCE COUNTERS

Performance monitoring can be a difficult task, and you have a choice of several performance counters. Choosing

important counters is key, but it depends a lot on the role of the system you want to monitor, and whether you are

concerned about planning capacity, ensuring availability, scaling upwards, monitoring for possible problems, or

troubleshooting issues that have arisen. In general, the following are a few important areas on which to focus

analysis.

PROCESSOR

A server that is too busy may be unable to satisfactorily respond to client requests. The simplest measure of a

system's busyness is Processor(_Total)\% Processor Time, which measures the total utilization of your processor

by all running processes. Note that if you have a multiprocessor machine, Processor(_Total)\% Processor Time

actually measures the average processor utilization of your machine (that is, utilization averaged over all

processors).

If you're monitoring this counter, and it's running at or near 100 percent for extended periods, you should drill

down at the process level by examining the Process(instance)\% Processor Time counter for various process

instances on your computer. For example, on an AOS instance, you might track Process(ax32serv)\% Processor

Time.

Another thing you can do to investigate high processor utilization is to break it down into Processor(_Total)\%

Privileged Time and Processor(_Total)\% User Time, which show processor utilization for kernel-mode and user-

mode processes on the server, respectively. If kernel-mode utilization is high, your machine is likely

underpowered, meaning that it is too busy handling basic OS housekeeping functions to be able to run other

applications effectively. If user-mode utilization is high, you may have your server running too many specific roles,

and you should either enhance your hardware configuration or migrate an application or role to another

computer.

MEMORY

Another key counter to watch is Memory\Available Bytes. If this counter is greater than 10 percent of the actual

RAM in your machine, you probably have more than enough RAM and don't need to worry.

You can monitor Process(instance)\Working Set for each process instance to determine which processes are

consuming large amounts of RAM.

The Memory\Pages/sec counter indicates the number of paging operations to disk during the measuring interval.

This is the primary counter to watch for an indication that your RAM may be insufficient to meet your server's

needs.

72
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

DISK DRIVES

A bottleneck from a disk drive can significantly impact response time for applications running on your system. If

read/write requests are queuing up for your disk, it is unable to service these requests in a timely fashion. In this

case, it's time either to upgrade your hardware to use faster disks or to scale out your application to better handle

the load.

GOOD SET OF COUNTERS

 Cache*

 IPv4*

 PhysicalDisk(*)*

 LogicalDisk*

 Memory*

 Network Interface(*)*

 Processor(*)*

 System*

 TCPv4*"

 Process(Ax32Serv)* (Axapta AOS specific)

The following are specific to SQL Server:

 SQLServer:Access Methods*"/>

 SQLServer:Buffer Manager*"/>

 SQLServer:Buffer Partition*"/>

 SQLServer:Cache Manager*"/>

 SQLServer:Databases*"/>

 SQLServer:General Statistics*"/>

 SQLServer:Latches*"/>

 SQLServer:Locks*"/>

73
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

 SQLServer:Memory Manager*"/>

 SQLServer:SQL Statistics*"/>

 SQLServer:User Settable*"/>

COUNTER SETS

A counter set is a set of performance counters that are useful to monitor during a load test run. When you create a

load test, Visual Studio Ultimate Test Edition lets you specify counter sets, which are part of the load test and apply

to all the scenarios in it. Counter sets are organized by technology—for example, there are ASP.NET counter sets

and SQL counter sets.

Counter sets are gathered on computers that you specify. The association between a counter set and a computer

that is used during a load test is a counter set map. For example, the web server you are testing might have

ASP.NET, Internet Information Services (IIS), and .NET application counter set mappings.

It is important that you add the servers under testing to the list of computers on which to collect counters. That

way, any important system data is collected and monitored during the load test.

USING COUNTER SETS

The load test tools collect and graph performance data by using counters over time. Counter data is collected at

user-specified intervals during a load test run. You can view the counters at run time, or you can view them after a

load test run. At run time, you use Load Test Monitor; after a run, you use Load Test Analyzer.

There are three counter categories: percentages, counts, and averages. Some examples are percentage of CPU

usage, SQL Server lock counts, and IIS requests per second.

CREATING CUSTOM COUNTER SETS

Visual Studio Ultimate Edition provides several predefined counter sets. To collect a counter that isn’t already part

of any set, you can create a new counter set to add the counter to a counter set that already exists.

See http://msdn.microsoft.com/en-us/library/ms404668(v=vs.100).aspx for more information about creating

custom counters.

http://msdn.microsoft.com/en-us/library/ms404668(v=vs.100).aspx

74
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

WORKING WITH LOAD TEST RESULTS GRAPHS

The results of a load test are displayed as data in several different panes. To display test results as graphs, click

Graphs on the load test toolbar. Each graph is displayed in a panel, with the graph name displayed at the top in a

drop-down list. To display a different graph in the panel, select a different graph name in the list. Up to four graph

panels can be displayed at a time. You can switch between panel layouts by using the panel layout toolbar button.

Several built-in graphs are provided. You can use the built-in graphs as-is, or you can customize them. Additionally,

you can create your own graphs.

BUILT-IN GRAPHS

The following table lists the built-in graphs that are available to help you analyze load test results.

Graph name Description

Key Indicators Counters that describe basic aspects of test performance, such as user load,
throughput, and response time.

Test Response Time Data about the amount of time tests take to run.

Page Response Time The average response time for webpages that are accessed during the load test.

System under Test Information about the computers on which the application being tested runs. This
includes data about memory use, the processor, the physical disk, and processes.

By default, only the Available Mbytes and Processor Time counters are collected.

Controller and Agents Information about the computers on which the load tests run. This includes data
about memory use, the processor, the physical disk, and processes.

By default, only the Available Mbytes and Processor Time counters are collected.

Transaction Response Time The average response time for transactions that occur during the load test.

You can display different counters on the graph both at run time and after a test has run.

The counter information is displayed both in the graphs and in the legend underneath the graphs. You can also

zoom in on a section of a graph.

COUNTERS DISPLAYED IN GRAPHS

For detailed descriptions about the counters that are displayed in graphs, see http://msdn.microsoft.com/en-

us/library/ms184782(v=vs.100).aspx.

DISPLAYING COUNTERS ON GRAPHS

You can add different kinds of data to a graph of load test results by placing counters on the graph.

See http://msdn.microsoft.com/en-us/library/bb385898(v=vs.100).aspx for detailed information.

http://msdn.microsoft.com/en-us/library/ms184782(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms184782(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb385898(v=vs.100).aspx

75
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

CREATING CUSTOM GRAPHS

You can design graphs that display specific information about load test results. You design a custom graph by

specifying the load test counters that the graph displays.

See http://msdn.microsoft.com/en-us/library/bb385836(v=vs.100).aspx for more information.

http://msdn.microsoft.com/en-us/library/bb385836(v=vs.100).aspx

76
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your people to make business
decisions with greater confidence. Microsoft Dynamics works like and with familiar Microsoft software, automating and streamlining financial,
customer relationship and supply chain processes in a way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

http://www.microsoft.com/dynamics

© 2013 Microsoft Corporation.

The content of this document is licensed under a Creative Commons Attribution 3.0 License. The license applies only to this document and not
to the computer code it accompanies.

LICENSE

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE
WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS
LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the
purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the
synchronization of the Work in timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of
this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined above) for
the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale
or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.
e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work

or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic
works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the
sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in
the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to
which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture,

http://www.microsoft.com/dynamics
http://creativecommons.org/licenses/by/3.0/

77
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a
copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or
artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a
previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by
any means or process, including by wire or wireless means or public digital performances; to make available to the public Works in
such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform
the Work to the public by any means or process and the communication to the public of the performances of the Work, including by
public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or
other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from
limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the
Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable
steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation
could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has
been modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,
d. to Distribute and Publicly Perform Adaptations.
e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any
statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such
royalties for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory
or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that
the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to
make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not
expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform
Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights
granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You
Distribute or Publicly Perform the Work, You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to
be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You must, to the extent

78
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

practicable, remove from the Collection any credit as required by Section 4(b), as requested. If You create an Adaptation, upon
notice from any Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(b), as
requested.

b. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made
pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor
designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in
Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the
Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv), consistent with Section 3(b), in
the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of the Work by
Original Author," or "Screenplay based on original Work by Original Author"). The credit required by this Section 4 (b) may be
implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit
will appear, if a credit for all contributing authors of the Adaptation or Collection appears, then as part of these credits and in a
manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the
credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce,
Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate,
modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or
reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this
License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action
prejudicial to the Original Author's honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the
fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this
License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE
USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on
the same terms and conditions as the license granted to You under this License.

79
MICROSOFT DYNAMICS AX® 2012 PERFORMANCE BENCHMARK SOFTWARE

DEVELOPMENT KIT (SDK)

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the
same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License may not be modified without the mutual written
agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961,
the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright
Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License
terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the
applicable national law. If the standard suite of rights granted under applicable copyright law includes additional rights not granted
under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the license
of any rights under applicable law.

