AI  

Building Intelligent Form Suggestions Using OpenAI APIs (2025 Guide)

Modern enterprise applications increasingly rely on smart automation to enhance user experience. One powerful capability is intelligent form suggestions—where your system predicts field values, autofills information, recommends dropdown options, or validates entries using AI.

This article explains how to implement intelligent form suggestions using OpenAI APIs in an Angular + ASP.NET Core stack, including workflows, architecture diagrams, and code samples.

1. What Are Intelligent Form Suggestions?

Intelligent Form Suggestions (IFS) use AI models to assist users while filling forms by providing:

  • Autofill suggestions

  • Predictive dropdown values

  • Contextual recommendations

  • Error detection or validation

  • Summaries or derived values

  • Smart defaults based on user history

Example use cases

  • ✔ Customer onboarding forms

  • ✔ Insurance claims

  • ✔ Work order forms

  • ✔ Shipping and UPS label creation

  • ✔ Compliance documents

2. High-Level Architecture

┌─────────────────────┐     API Call     ┌───────────────────────┐│     Angular UI       │  ─────────────▶ │ ASP.NET Core Backend   ││(Captures Form Data)  │                 │(Prepares Prompt)       │└─────────────────────┘                 └─────────┬─────────────┘
                                                  |
                                                  | OpenAI API Request
                                                  ▼
                                       ┌─────────────────────────┐
                                       │       OpenAI Model      │
                                       │ (GPT-5.1 or fine-tuned) │
                                       └─────────┬──────────────┘
                                                  |
                                                  ▼
┌─────────────────────┐     AI Suggestions     ┌──────────────────────┐│     Angular UI       │ ◀──────────────────── │ ASP.NET Core Backend ││(Displays Suggestions)│                        └──────────────────────┘└─────────────────────┘

3. Workflow Diagram

┌─────────────────────────────────────────┐
│ User starts filling a form in Angular   │
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ Angular collects partial form data      │
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ Angular sends data to API (/ai/suggest)│
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ API builds prompt with business context │
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ API calls OpenAI GPT-5.1 model          │
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ Model returns JSON suggestions          │
└─────────────────────────────────────────┘
                   │
                   ▼
┌─────────────────────────────────────────┐
│ Angular shows inline field suggestions  │
└─────────────────────────────────────────┘

4. Designing the Prompt for High Accuracy

Example prompt sent from backend:

You are an AI assistant helping to auto-suggest form values.
The user is filling a Shipping Work Order form.

Here is the partial data:
{
  "customerName": "John Mathew",
  "country": "USA",
  "packageWeight": 12
}

Predict the following:
- Suggested Shipping Method
- Recommended Packaging Type
- Is Insurance Required (Yes/No)
- Any validation warnings

Return JSON only:
{
  "shippingMethod": "",
  "packageType": "",
  "insuranceRequired": "",
  "warnings": []
}

Best practices

  • Always force JSON output

  • Include business rules

  • Include sample data

  • Keep format strict

  • Use system + user messages

5. ASP.NET Core Backend Implementation

Install SDK

dotnet add package OpenAI

C# Controller

[HttpPost("suggest")]
public async Task<IActionResult> GetFormSuggestions([FromBody] FormInput input)
{
    var client = new OpenAIClient(Environment.GetEnvironmentVariable("OPENAI_API_KEY"));

    var prompt = @$"
You are an AI assistant for form suggestions.
Input: {JsonConvert.SerializeObject(input)}

Return JSON only:
{{
  ""shippingMethod"": """",
  ""packageType"": """",
  ""insuranceRequired"": """",
  ""warnings"": []
}}";

    var req = new ChatCompletionRequest
    {
        Model = "gpt-5.1",
        Messages = new[]
        {
            new ChatMessage("system", "You return JSON only."),
            new ChatMessage("user", prompt)
        }
    };

    var response = await client.Chat.CreateAsync(req);

    var json = response.Choices.First().Message.Content;

    return Ok(JsonConvert.DeserializeObject<dynamic>(json));
}

6. Angular Frontend Implementation

Service

suggestForm(data: any): Observable<any> {
  return this.http.post('/api/ai/suggest', data);
}

Component

onFieldChange() {
  const partialData = this.formGroup.value;

  this.aiService.suggestForm(partialData)
    .subscribe(s => {
      this.suggestions = s;
    });
}

UI Example

<input formControlName="shippingMethod" [placeholder]="suggestions?.shippingMethod" />
<div class="warning" *ngFor="let w of suggestions?.warnings">{{w}}</div>

7. Improving Suggestion Accuracy

✔ Add domain data

✔ Add industry rules
✔ Add sample valid/invalid examples
✔ Use fine-tuned models if needed
✔ Use embeddings for semantic similarity
✔ Cache suggestions to reduce cost

8. Security Considerations

  • Enable rate-limiting

  • Mask sensitive data before sending to AI

  • Avoid sending passwords, card numbers

  • Use Azure API Management or APIM gateway

  • Encrypt logs if prompts stored

9. When to Use Fine-tuning vs Few-shot Prompts

ScenarioUse Fine-TuningUse Prompting
Repetitive domain-specific forms
Dynamic, varied forms
Requires strict structured output
Large enterprise datasets

10. Final Best Practices Checklist

Backend

  • Always enforce JSON schema

  • Add retry logic

  • Use caching

  • Log prompt + response size

Frontend

  • Never block UI while fetching suggestions

  • Show loading indicator

  • Provide manual override option

Overall

  • Avoid sending PII

  • Limit prompt size

  • Version prompts for consistency

Conclusion

By integrating OpenAI APIs into your Angular + ASP.NET Core application, you can implement smart, contextual form suggestions that significantly enhance usability, prevent errors, and accelerate user workflows.

This architecture is scalable, secure, and works for enterprise applications in logistics, manufacturing, finance, HR, and customer onboarding.