Business Intelligence(BI)  

AI-Powered Email Categorization Using SQL Server Data

In modern enterprises, users receive hundreds of emails daily, making manual categorization slow and error-prone. AI-powered email categorization automates sorting emails into categories like Important, Promotions, Support, or Spam, improving productivity and user experience.

This article explains how to build an AI-powered email categorization system using SQL Server for storage, ASP.NET Core backend, and optional Angular frontend, along with real-world best practices.

1. Understanding Email Categorization

Email categorization is the process of classifying incoming emails into predefined categories. AI models analyze:

  • Email subject

  • Body content

  • Sender and recipient information

  • Historical user interactions

Benefits

  • Reduces manual effort

  • Improves email triaging

  • Provides insights for automated workflows

2. Architecture Overview

Email Client / Web Frontend
        |
        | HTTP / REST API
        v
ASP.NET Core Web API
        |
        | ML Engine / AI Service
        v
SQL Server Database
  • Frontend:displays categorized emails, allows manual corrections

  • Backend: fetches emails, interacts with AI model, stores categories

  • SQL Server: stores raw emails, metadata, and categorized results

  • AI Engine: predicts category for each email using machine learning or cloud AI

3. Database Design

3.1 Tables

  1. Emails – stores incoming email data

  2. Categories – predefined categories (Important, Promotions, Spam, etc.)

  3. EmailCategories – stores predicted or manually corrected categories

Example: Emails Table

CREATE TABLE Emails (
    EmailId INT PRIMARY KEY IDENTITY,
    UserId INT NOT NULL,
    Sender NVARCHAR(255) NOT NULL,
    Subject NVARCHAR(500),
    Body NVARCHAR(MAX),
    ReceivedAt DATETIME2 DEFAULT GETDATE(),
    FOREIGN KEY (UserId) REFERENCES Users(UserId)
);

EmailCategories Table

CREATE TABLE EmailCategories (
    EmailCategoryId INT PRIMARY KEY IDENTITY,
    EmailId INT NOT NULL,
    CategoryId INT NOT NULL,
    PredictedByAI BIT DEFAULT 1,
    AssignedAt DATETIME2 DEFAULT GETDATE(),
    FOREIGN KEY (EmailId) REFERENCES Emails(EmailId),
    FOREIGN KEY (CategoryId) REFERENCES Categories(CategoryId)
);
  • Index on UserId and ReceivedAt for fast retrieval

  • Consider full-text search on Subject and Body for AI preprocessing

4. ASP.NET Core Backend Implementation

4.1 Email Ingestion Endpoint

[HttpPost("ingest")]
public async Task<IActionResult> IngestEmail([FromBody] EmailDto email)
{
    var newEmail = new Email
    {
        UserId = email.UserId,
        Sender = email.Sender,
        Subject = email.Subject,
        Body = email.Body,
        ReceivedAt = DateTime.UtcNow
    };

    _dbContext.Emails.Add(newEmail);
    await _dbContext.SaveChangesAsync();

    // Trigger AI categorization
    await _emailCategorizationService.CategorizeEmailAsync(newEmail);

    return Ok(new { message = "Email ingested and queued for categorization." });
}

4.2 AI Categorization Service

public class EmailCategorizationService : IEmailCategorizationService
{
    private readonly IAiService _aiService;
    private readonly AppDbContext _dbContext;

    public EmailCategorizationService(IAiService aiService, AppDbContext dbContext)
    {
        _aiService = aiService;
        _dbContext = dbContext;
    }

    public async Task CategorizeEmailAsync(Email email)
    {
        var category = await _aiService.PredictCategoryAsync(email.Subject, email.Body);

        var emailCategory = new EmailCategory
        {
            EmailId = email.EmailId,
            CategoryId = category.Id,
            PredictedByAI = true,
            AssignedAt = DateTime.UtcNow
        };

        _dbContext.EmailCategories.Add(emailCategory);
        await _dbContext.SaveChangesAsync();
    }
}

4.3 AI Model Approaches

  1. Rule-Based Classification – keyword matching for simple scenarios

  2. ML Models – supervised classification using Naive Bayes, SVM, or deep learning

Example using ML.NET

public class EmailData
{
    public string Subject { get; set; }
    public string Body { get; set; }
    public string Category { get; set; }
}

public class EmailPrediction
{
    [ColumnName("PredictedLabel")]
    public string PredictedCategory { get; set; }
}
  • Train model using historical emails

  • Features: Subject + Body concatenation, sender metadata, and text preprocessing

  • Predict category and store in SQL Server

5. Angular Frontend Implementation

5.1 Display Emails with Categories

<table mat-table [dataSource]="emails" class="mat-elevation-z8">
  <ng-container matColumnDef="sender">
    <th mat-header-cell *matHeaderCellDef> Sender </th>
    <td mat-cell *matCellDef="let email"> {{email.sender}} </td>
  </ng-container>

  <ng-container matColumnDef="subject">
    <th mat-header-cell *matHeaderCellDef> Subject </th>
    <td mat-cell *matCellDef="let email"> {{email.subject}} </td>
  </ng-container>

  <ng-container matColumnDef="category">
    <th mat-header-cell *matHeaderCellDef> Category </th>
    <td mat-cell *matCellDef="let email"> {{email.category}} </td>
  </ng-container>

  <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
  <tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>

5.2 Manual Category Correction

  • Allow users to override AI predictions

  • Update PredictedByAI to false for corrected entries

updateCategory(emailId: number, categoryId: number) {
  this.http.post(`/api/emails/update-category`, { emailId, categoryId })
    .subscribe(() => this.loadEmails());
}

6. Performance Considerations

  1. Batch Categorization – categorize emails in batches during off-peak hours

  2. Cache frequently predicted categories to reduce repeated AI calls

  3. Index Subject and Body columns for fast retrieval

  4. Use full-text search to preprocess text for AI

7. Security Considerations

  • Sanitize email content before sending to AI service

  • Encrypt sensitive data in SQL Server

  • Authenticate API endpoints with JWT/OAuth2

  • Implement access control to prevent unauthorized category modifications

8. Real-world Best Practices

  1. Incremental Model Updates: retrain models with user-corrected labels

  2. Confidence Threshold: show AI suggestion only if confidence > 70%

  3. Audit Trail: keep history of AI vs manual categorization

  4. Scalable AI Deployment: use Azure Cognitive Services or cloud ML models for production

  5. User Feedback Loop: improve AI accuracy based on corrections

9. Summary

AI-powered email categorization using SQL Server enables:

  • Faster email triaging

  • Personalized sorting per user

  • Continuous improvement via AI feedback

Implementation involves:

  • Storing email metadata in SQL Server

  • ASP.NET Core backend to ingest emails and call AI categorization service

  • AI models (ML.NET or cloud AI) to predict categories

  • Angular frontend to display categorized emails and allow manual corrections

  • Following performance, security, and monitoring best practices

With this approach, developers can build intelligent email systems that automate repetitive tasks and improve user productivity.