Machine Learning  

Building a Domain-Aware Search Indexer | Auto-Tagging, Semantic Relationships, and Business-Context Aware Querying

Introduction

Search in enterprise applications is rarely just text matching—it's about understanding the business meaning behind data. A search query like:

"Aircraft brake problem invoice last month"

should return:

  • Work orders related to aircraft components containing the keyword brake

  • Associated maintenance logs

  • Supplier invoices

  • Warranty and compliance documents
    — not merely results where those words appear.

A Domain-Aware Search Indexer goes beyond keyword indexing by applying classification, semantic enrichment, and entity relationships, turning raw records into business-aware search assets.

This article provides a full architectural blueprint, data models, tagging strategies, enrichment logic, storage models (ElasticSearch, Postgres JSONB, Azure Search, or OpenSearch), and implementation patterns using Angular UI + .NET backend.

Objectives

Primary goals

  • Auto-classify records based on schema, data patterns, and metadata.

  • Extract relationships (entities → documents → transactions → logs).

  • Maintain unified search index structures with contextual scoring.

  • Support multi-tenant, multilingual, and version-aware indexing.

Non-goals

  • Not a replacement for full semantic vector search engines (though vector search can be integrated).

  • Not a general AI knowledge graph (but lightly structured graph relationships are supported).

Architecture Overview

                     ┌────────────────────┐
                     │ Angular Admin UI   │
                     └───────────┬────────┘
                                 │ config, review, replay
                                 ▼
                      ┌──────────────────────┐
                      │ Ingestion API (.NET) │
                      └───────┬──────────────┘
                              │ raw items
                              ▼
                    ┌───────────────────────┐
                    │ Classifier Engine      │
                    │ (rules + ML + regex)   │
                    └───────┬────────────────┘
                            │ enriched items
                            ▼
                ┌───────────────────────────────┐
                │ Relationship Graph Builder     │
                │ (FK→entity links, similarity)  │
                └───────┬───────────────────────┘
                        │ final structured docs
                        ▼
                ┌─────────────────────────────────┐
                │ Search Index Storage            │
                │ (ElasticSearch / Azure Search)  │
                └─────────────────────────────────┘

Key Features

1. Auto-Tagging Using Rules and ML

Tagging sources

TypeExample MethodExamples
Rule-basedRegex, keyword dictionaries"FAA", "ISO-9001", "Airworthiness"
ML modelsBERT classifier, NER, fastTextDetect "invoice", "part", "customer"
Structural inferenceColumn names, table meaning"StockLine → Inventory → Category=Parts"

Tagged metadata examples:

{"entityType": "Invoice","tags": ["Finance", "Parts", "Supplier", "Compliance"],"confidence": 0.92}

2. Domain Relationship Detection

Use business logic to infer relationships:

EntityRelationship Logic
WorkOrder → AircraftFK OR part usage history
Invoice → PurchaseOrdermatching vendor + documentNo + date proximity
Warranty → Component → Part → Vendorrelational transitive chain

Relationships are stored as a lightweight graph:

{"id": "INV-10045","links": [
    { "type": "references", "target": "PO-5567" },
    { "type": "relatedTo", "target": "WO-782" }]}

3. Vector-Based Semantic Enrichment (Optional)

Use embeddings when exact keywords don’t exist (e.g., "tire" ≈ "wheel" ≈ "landing gear tire").

Store vector fields:

  • Sentence embedding

  • Entity centroid embedding

  • Relationship proximity embedding

This enables hybrid search: keyword + vector similarity + metadata filters.

4. Contextual Scoring Strategy

Ranking score is a weighted function:

score = (TF-IDF * 0.3) +
        (EntityMatchBoost * 0.2) +
        (TagMatchBoost * 0.2) +
        (VectorSimilarity * 0.2) +
        (RecencyBoost * 0.1)

Example boosts

  • Records linked to "current aircraft" get +20%

  • Recently updated items receive decay-based scoring

  • Parent entities boost children entities (documents, line items)

Index Structure

A universal schema for indexing all entities:

{"id": "WO-91235","entityType": "WorkOrder","tenant": "TenantA","title": "Brake Assembly Replacement","body": "Maintenance performed on Boeing 737 brake actuator module.","tags": ["Maintenance", "Brake", "Aircraft"],"relatedEntities": ["PO-5551","INV-948"],"timestamp": "2025-01-14T09:22:11Z","semanticVector": [0.143, -0.551, ...]}

Implementation (Backend .NET)

Classification Pipeline Skeleton

public async Task<IndexedDocument> EnrichAsync(RawDocument doc)
{
    var result = new IndexedDocument
    {
        Id = doc.Id,
        Content = doc.Text,
        Title = ExtractTitle(doc),
        Tenant = doc.Tenant
    };

    result.Tags = _tagger.GenerateTags(doc);
    result.Relationships = await _relationshipService.DetectAsync(doc);
    result.Vector = _vectorService.GenerateEmbedding(doc.Text);

    return result;
}

Logical Entity Relationship Detection Example

public async Task<IEnumerable<EntityLink>> DetectAsync(RawDocument doc)
{
    var links = new List<EntityLink>();

    if (doc.Contains("PO-"))
        links.Add(new EntityLink("PurchaseOrder", ExtractId(doc, "PO")));

    if (doc.VendorCode != null)
        links.Add(new EntityLink("Vendor", doc.VendorCode));

    return links;
}

Angular UI Capabilities

  • Search Insights Dashboard

  • Relationship Graph Explorer (Neo4j visualization or force-graph)

  • Filter by: tenant, entity type, tags, compliance status, confidence score

  • Manual override tagging and relationship editing

  • Reinforcement learning feedback: “Was this correct? Yes / No”

Operational Lifecycle

PhaseAction
IngestionMonitor database changelogs / events
EnrichmentApply tagging, classification, vectorization
Index updateReal-time incremental updates
ValidationScoring, quality checks, drift detection
GovernanceAudit logs, explainability, rejection queue

Governance & Compliance

  • Store AI classification confidence → allow human approval workflow

  • Support redaction and rebuild (e.g., GDPR Right-to-Delete)

  • Ensure tenant isolation in multi-tenant indexing clusters

  • Version index schemas and allow rolling upgrades

Common Pitfalls and Solutions

PitfallFix
Over-indexing irrelevant fieldsUse field importance matrix
Incorrect relationships from weak FKsUse multi-signal scoring (keyword + metadata)
Search feels randomApply weighted scoring model tuned to domain
Index bloatUse TTL and tiered storage for old historic entries

Summary

A Domain-Aware Search Indexer transforms enterprise data from raw disconnected records into a meaningful, contextual, queryable knowledge system.

Key takeaways:

  • Use rules, ML, and metadata to auto-classify and enrich content.

  • Build relationship graphs to link business entities.

  • Combine keyword, vector, metadata, and time-aware scoring for ranking.

  • Offer human feedback loops to tune accuracy.

  • Use multi-tenant governance, versioning, and compliance controls.