Social media platforms generate vast amounts of unstructured data daily. Brands, marketers, and researchers are increasingly interested in understanding how users feel about products, services, or events. Sentiment analysis, powered by AI and machine learning, helps extract actionable insights from social media posts.
In this article, we will explore how to build a full-stack web application for sentiment-based social media analytics using ASP.NET Core for the backend, Angular for the frontend, and AI for sentiment analysis. We will focus on real-world best practices, scalability, and maintainability.
Table of Contents
Introduction to Social Media Sentiment Analysis
Core Features of the Analytics App
Architecture Overview
Setting Up ASP.NET Core Backend
Integrating Social Media APIs
Implementing Sentiment Analysis
Building the Angular Frontend
Data Visualization and Dashboards
Authentication and Security
Performance Optimization
Testing and Deployment
Conclusion
1. Introduction to Social Media Sentiment Analysis
Sentiment analysis is the process of detecting positive, negative, or neutral emotions in textual data. For social media, this involves:
Collecting posts, tweets, comments, or reviews
Preprocessing the text for analysis
Using AI or NLP models to classify sentiments
Aggregating results to identify trends
A full-stack app combines data collection, processing, analysis, and visualization into a single platform that allows users to monitor social media sentiment in real time.
2. Core Features of the Analytics App
A production-ready social media sentiment analysis platform should include:
Data Collection: Fetch posts from APIs like Twitter, Facebook, or Instagram.
Sentiment Analysis Engine: AI-powered classification into positive, negative, or neutral.
Interactive Dashboards: Visualize trends with charts and graphs.
Filters and Search: Filter posts by date, user, keyword, or sentiment.
Alerts and Notifications: Notify when sentiment crosses thresholds.
User Authentication: Secure access to analytics.
Export Options: Download reports in CSV or PDF.
3. Architecture Overview
A scalable architecture includes:
Backend (ASP.NET Core)
REST APIs for social media data ingestion and processing
AI integration for sentiment classification
Entity Framework Core for database operations
Background services for scheduled data collection
Frontend (Angular)
Angular 16+ with Angular Material
Charts using Chart.js, ngx-charts, or D3.js
Reactive forms for filtering and search
State management using NgRx
AI & NLP
Pre-trained models or libraries such as ML.NET, Hugging Face Transformers, or Python-based APIs
Sentiment scoring and categorization
Storage
SQL Server/PostgreSQL for structured data
Redis for caching frequently queried analytics
Optional: Blob storage for large datasets
4. Setting Up ASP.NET Core Backend
Create a new ASP.NET Core Web API:
dotnet new webapi -n SentimentAnalyticsAPI
cd SentimentAnalyticsAPI
Install essential packages:
dotnet add package Microsoft.EntityFrameworkCore.SqlServer
dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer
dotnet add package Microsoft.Extensions.Http
Configure JWT authentication in Program.cs:
builder.Services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
.AddJwtBearer(options =>
{
options.TokenValidationParameters = new TokenValidationParameters
{
ValidateIssuer = true,
ValidateAudience = true,
ValidateLifetime = true,
ValidIssuer = builder.Configuration["Jwt:Issuer"],
ValidAudience = builder.Configuration["Jwt:Audience"],
IssuerSigningKey = new SymmetricSecurityKey(
Encoding.UTF8.GetBytes(builder.Configuration["Jwt:Key"]))
};
});
5. Integrating Social Media APIs
a. Twitter API Example
public class TwitterService
{
private readonly HttpClient _http;
public TwitterService(HttpClient http)
{
_http = http;
}
public async Task<List<Tweet>> GetTweetsAsync(string hashtag)
{
var response = await _http.GetAsync($"https://api.twitter.com/2/tweets/search/recent?query={hashtag}");
response.EnsureSuccessStatusCode();
var json = await response.Content.ReadAsStringAsync();
return JsonSerializer.Deserialize<List<Tweet>>(json);
}
}
6. Implementing Sentiment Analysis
You can implement sentiment analysis using ML.NET, a Python API, or external AI services.
a. Using ML.NET
public class SentimentModel
{
public string Text { get; set; }
public bool Sentiment { get; set; }
}
var mlContext = new MLContext();
var data = mlContext.Data.LoadFromEnumerable(tweets);
var pipeline = mlContext.Transforms.Text.FeaturizeText("Features", nameof(SentimentModel.Text))
.Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(labelColumnName: "Sentiment", featureColumnName: "Features"));
var model = pipeline.Fit(data);
b. Using Python AI API
var response = await _http.PostAsJsonAsync("http://localhost:5000/analyze", tweetText);
var sentiment = await response.Content.ReadFromJsonAsync<SentimentResult>();
7. Building the Angular Frontend
Create Angular project:
ng new sentiment-analytics --routing --style=scss
cd sentiment-analytics
ng add @angular/material
a. Service for Analytics API
@Injectable({ providedIn: 'root' })
export class AnalyticsService {
constructor(private http: HttpClient) {}
getSentimentData(filter: any) {
return this.http.post('/api/analytics/sentiments', filter);
}
getTrendingHashtags() {
return this.http.get('/api/analytics/trending');
}
}
b. Components
DashboardComponent: Displays charts for positive, negative, and neutral sentiments
FilterComponent: Allows date, hashtag, or user filtering
TweetListComponent: Shows individual posts and sentiment scores
8. Data Visualization and Dashboards
Use Chart.js or ngx-charts for interactive visualizations:
public sentimentChartData = {
labels: ['Positive', 'Neutral', 'Negative'],
datasets: [
{
data: [120, 50, 30],
backgroundColor: ['#4caf50', '#ffeb3b', '#f44336']
}
]
};
Display trend lines for sentiment over time.
Leaderboards for hashtags or top mentions.
Real-time updates via SignalR for streaming sentiment changes.
9. Authentication and Security
JWT Tokens for API authentication.
Role-based access for analysts, admins, and viewers.
HTTPS enforced for all endpoints.
Input validation to prevent injection attacks.
[Authorize(Roles = "Admin,Analyst")]
[HttpGet("trending")]
public IActionResult GetTrendingHashtags() => Ok(_analyticsService.GetTrendingHashtags());
10. Performance Optimization
Cache frequent API results in Redis or in-memory cache.
Paginate tweets and analytics results to reduce load.
Use background processing for AI inference using IHostedService.
Minimize API calls to social media platforms using batching.
11. Testing and Deployment
Testing
Unit tests for Angular services and components
Integration tests for ASP.NET Core endpoints
Validate AI model predictions with a test dataset
Deployment
Containerize frontend and backend using Docker
Deploy backend and AI service on Azure App Services or AWS ECS
Use CI/CD pipelines for automatic builds and deployment
12. Conclusion
Building a full-stack sentiment-based social media analytics platform combines modern web technologies, AI, and data visualization. Key takeaways:
ASP.NET Core provides a robust backend for API, data processing, and AI integration.
Angular ensures a responsive, interactive frontend with dashboards and filtering.
AI-powered sentiment analysis extracts insights from unstructured social media data.
Caching, background services, and secure authentication make the system production-ready.
With this architecture, developers can build scalable and maintainable platforms for brands, researchers, or marketers to monitor sentiment trends in real-time and make data-driven decisions.