Executive Summary
Build a production-ready n8n workflow that converts a single news article URL into platform-optimized social posts (LinkedIn, Reddit, X/Twitter) plus an AI-generated image. The 8-node architecture below is cost-aware, robust, and designed for scale:
![news]()
Workflow Architecture at a Glance
Here's the streamlined, production-ready 8-node workflow :
Manual Trigger β HTTP Request β HTML Parser β OpenAI GPT (LinkedIn)
β OpenAI GPT (Reddit) β OpenAI GPT (X/Twitter) β OpenAI Image β Output Formatter
This system ensures each article URL becomes a LinkedIn post (200β250 words), Reddit post (300β400 words), and tweet (<280 characters) , all accompanied by a social-optimized AI image .
Platform-Specific Optimization
LinkedIn: Insight-driven, short paragraphs, clear call-to-engagement.
Reddit: Contextual, non-promotional, encourages discussion.
Twitter/X: Short, punchy, curiosity-driven.
![platform]()
High-level workflow design
Manual Trigger β user pastes article URL (or webhook/bookmarklet triggers).
HTTP Request β fetch article HTML with safe headers and optional rendering fallback.
HTML Parser β extract title, author, published date, main content (or call an extractor like Mercury/Readability).
OpenAI GPT (LinkedIn) β produce 200β250 word professional post.
OpenAI GPT (Reddit) β produce 300β400 word discussion post with context.
OpenAI GPT (X/Twitter) β produce <280 char viral-optimized tweet.
OpenAI Image β build DALLΒ·E 3 prompt from article and generate image in landscape/1.91:1 for social.
Output Formatter β assemble final JSON with content + image URL, metadata, QA score.
Sample Outputs (toy example using a TechCrunch-style headline)
Input URL: https://www.c-sharpcorner.com/ 2025/09/01/ai-startup-raises-series-b/
Extracted title: AI startup raises $120M to scale privacy-preserving ML
LinkedIn (sample, 220 words):
Companies investing in privacy-preserving ML are betting that trust will be the real competitive edge...
[two short paragraphs with insights and one practical takeaway]
Hashtags: #AI #Privacy #ML
Engagement question: What steps is your org taking to make ML models privacy-aware?
Reddit (sample, 350 words) β summary, bullet points, 3 open questions suitable for r/MachineLearning.
Tweet (sample):
New $120M bet on privacy-first ML β is trust the next moat in AI? π #AI #Privacy
Image: a clean, blue-toned photo-realistic composition showing abstract neural-network overlays on a city skyline (1200Γ628 px).
Node 1 β Manual Trigger
Purpose: Accept a news article URL + optional metadata (platform toggles/tone).
n8n config:
Usage: If you want a one-click from the browser, create a Webhook node and a bookmarklet that opens a request.
Fallback: When used as a webhook, validate origin: check headers.referer
or HMAC signature.
Validation snippet (Function node style):
// Validate input
const item = items[0].json;
if (!item.url || !/^https?:\/\/.+/i.test(item.url)) {
throw new Error('Invalid or missing URL in input');
}
return items;
Node 2 β HTTP Request (Fetch HTML)
Purpose: Retrieve raw HTML. Use headers & user-agent; optionally route through a renderer for JS-heavy pages.
n8n config (HTTP Request node):
Options:
If site blocks non-browser UA: set Accept
& User-Agent
to a real browser UA.
For paywalled/dynamic content: set force_render=true
and call a headless rendering service (Puppeteer cloud, Rendertron, Browserless). Configure the rendering service URL in credential settings.
JS fallback (Function node to optionally render):
// Example: If response doesn't contain main article markers, call renderer
const html = $json['body'] || '';
if (html.length < 2000 || !/article|<main|schema.org\/Article/i.test(html)) {
// Call external renderer via HTTP Request node or cloud function
// Put a flag so we don't loop indefinitely
return [{ json: { needsRendered: true } }];
}
return [{ json: { html } }];
Error handling:
Retry on 5xx with exponential backoff (2s, 6s, 18s) up to 3 tries.
If the domain blocks requests, return a clear error and suggestion: "Use the browser bookmarklet or pass article text".
Security/legal note: Do not bypass paywalls illegally. Prefer user-provided content copy/paste for subscriber content.
Node 3 β HTML Parser (extract article)
Purpose: Extract: title
, author
, published_date
, lead_image
, and main_text
.
Two approaches:
n8n Built-in HTML Extract node (fast; CSS selectors).
Function node + Cheerio (fallback for complex pages) β we include both.
A) HTML Extract Node config (preferred)
Mode: HTML
Input: {{$node["HTTP Request"].json["body"]}}
Fields to extract:
Title: selector meta[property="og:title"], title
Author: meta[name="author"], .author
Date: meta[property="article:published_time"], time[datetime]
Lead image: meta[property="og:image"]
Main content: selector heuristics like article, main, .article-body, .post-content
Use multiple
false for scalars, multiple
true for paragraphs (then join).
Selectors + Regex fallback:
B) Function node using Cheerio (robust)
If you prefer a code approach (n8n Function node supports cheerio
via importing), use this:
const cheerio = require('cheerio'); // available in n8n Function?
// If not, the HTTP Request node can call a cloud function that runs cheerio.
const html = $node['HTTP Request'].json['body'];
const $ = cheerio.load(html);
function meta(name) {
return $(`meta[name="${name}"]`).attr('content') || $(`meta[property="${name}"]`).attr('content');
}
const title = meta('og:title') || $('title').first().text().trim();
const author = meta('author') || $('[rel=author]').first().text().trim() || $('.author').first().text().trim();
const date = meta('article:published_time') || $('time[datetime]').attr('datetime') || $('meta[name="date"]').attr('content');
const lead_image = meta('og:image') || $('img').first().attr('src');
// Main content heuristics: article > p, .article-body p, .post-content p
let paragraphs = [];
['article', '.article-body', '.post-content', '.entry-content', 'main'].some(sel => {
const p = $(`${sel} p`).map((i, el) => $(el).text().trim()).get().filter(Boolean);
if (p.length) { paragraphs = p; return true; }
});
if (!paragraphs.length) {
// fallback: largest block of text
const candidates = $('p').map((i, el) => $(el).text().trim()).get();
paragraphs = candidates.slice(0, 12);
}
const mainText = paragraphs.join('\n\n').trim();
return [{ json: { title, author, date, lead_image, mainText, sourceDomain: new URL($node['HTTP Request'].json.url).hostname } }];
Regex patterns (useful for cleanup):
Remove scripts/styles: /<script[\s\S]*?>[\s\S]*?<\/script>/gi
and /<style[\s\S]*?>[\s\S]*?<\/style>/gi
Trim consecutive whitespace: /\s{2,}/g
β ' '
Remove inline ads or "Read more" footers: /Read more|Subscribe|Sign up|Continue reading/gi
Validation:
Node 4 β OpenAI GPT (LinkedIn)
Purpose: Generate 200β250 word professional, thought-leadership LinkedIn post with hashtags and an engagement question.
Authentication: Use n8n OpenAI node credentials (OpenAI API Key). You can use the built-in OpenAI
node or an HTTP Request node calling the OpenAI REST API.
Model recommendation:
GPT-4o for best quality & succinctness if budget allows. Otherwise, gpt-3.5-turbo for cost savings. For production, recommend using GPT-4o for LinkedIn only if ROI is justified. (Model availability depends on your OpenAI plan.) n8n Docs+1
Prompt engineering
You are a professional communications specialist crafting LinkedIn posts for senior technology audiences. Tone: authoritative, helpful, and concise. Use thought leadership framing and recommend one practical takeaway. Provide 3 relevant hashtags. Include a single engagement question at the end.
Article title: {{title}}
Source: {{sourceDomain}}
Published: {{date}}
Lead sentence / summary: {{firstParagraph}}
Full text excerpt (for context): {{mainText (first 800 tokens)}}
Instructions:
- Write a LinkedIn post of 200-250 words.
- Use a professional tone and include 2β3 industry insights based on the article content.
- Add exactly 3 hashtags (relevant, no more).
- Finish with a single engagement question (e.g., "What do you think about...?").
- Avoid mentioning "as an AI" or "I as an AI".
- Keep paragraphs short (max 2 sentences each).
Return as JSON with keys: "post_text", "hashtags", "engagement_question".
n8n OpenAI Node config (chat completion):
Resource: Chat Completion
Model: gpt-4o
(or gpt-3.5-turbo
)
Messages: JSON array with role:system
and role:user
above.
Max tokens: 600
Temperature: 0.2 (professional)
Top_p: 0.9
Frequency_penalty: 0.2
Presence_penalty: 0.0
Token optimization strategies:
Error handling & retry:
On rate limit (429), implement exponential backoff: wait 2s β 6s β 18s, retry 3 times.
If the model returns content > 250 words, run a quick truncation/rewriter pass to enforce limits.
Fallback: If GPT fails, use a templated filler:
[Title]: short 220-word template based on title and first paragraph... (insert paraphrase)
Node 5 β OpenAI GPT (Reddit)
Purpose: Produce a 300β400 word Reddit-friendly post designed to provoke discussion in a relevant subreddit. Include context and discussion prompts.
System prompt:
You are a community manager writing a Reddit post for a tech/business subreddit. Tone: neutral, open-ended, encouraging discussion. Provide background, key points, and 3 discussion prompts. Avoid promotional language and first-person marketing. Target length: 300-400 words.
User prompt:
Title: {{title}} β write a Reddit post suitable for r/technology or r/business.
Include:
- A short summary (2-3 sentences)
- 3 evidence-backed talking points (concise)
- Encouraging open-ended questions (3)
Length: 300β400 words.
Return JSON: { "post_body", "discussion_prompts", "suggested_subreddits": ["r/technology"] }
OpenAI Node config:
Subreddit optimization:
For r/technology => avoid brand names in a promotional tone.
For r/news or specialized subs, adjust tone; the Function node can choose subreddits based on domain/article tags.
Quality checks:
Node 6 β OpenAI GPT (X/Twitter)
Purpose: Create one X/Twitter post under 280 characters, optimized for virality and engagement (hashtag count 1β3, one emoji optional).
System prompt:
You are a social media copywriter writing X/Twitter posts. Keep it under 280 characters. Emphasize curiosity, numbers, controversy (if safe), or a bold insight. Add 1-3 hashtags and 1 engagement CTA (retweet/comment). No more than one emoji. Keep language punchy and concise.
User prompt:
Article title: {{title}}
1β2 sentence hook derived from article.
Write 1 tweet <280 characters including hashtags and emoji.
Return JSON: { "tweet_text" }
OpenAI Node config:
Validation: Character count enforced via a Function node:
const tweet = $json.tweet_text;
if (tweet.length > 280) {
// Try a shortener prompt or truncate carefully
// Or request model to rewrite shorter
throw new Error('Tweet exceeds 280 chars');
}
Fallback: If generation >280, call the same model with instruction: "Rewrite the text to be <=280 chars".
Node 7 β OpenAI Image (DALLΒ·E 3)
Purpose: Generate a social-media-optimized image (landscape, 1200Γ628 px or aspect ratio 1.91:1) that matches the article's core theme.
Model: dall-e-3
(or gpt-image-1
depending on the API wrapper. DALLΒ·E 3 expects highly detailed prompts β the API will also refine prompts automatically per docs. OpenAI Help Center+1
Prompt generation (Function node):
Build a dynamic prompt using: title
, firstParagraph
, main topics
, preferred style
, target audience
.
Include composition, style, color palette, avoid protected artists, and exclude logos/brand names.
Example dynamic prompt template:
Create a high-res landscape image (1200x628 px) for a social post about "{{title}}". Visual concept: {{one_line_concept}}.
Elements: modern office skyline, abstract data visualization overlays, diverse professionals (not identifiable), cool blue & teal palette, minimal text overlay space on right.
Style: photo-realistic with subtle graphic overlays, high contrast, clean composition.
Do not include logos, copyrighted characters, or watermarks. No text other than a small unobtrusive watermark area.
n8n OpenAI Image Node config (if using built-in):
Resource: Image Generation
Model: dall-e-3
(or gpt-image-1
depending on n8n)
Prompt: the generated prompt above
Size: 1200x628
(if allowed) or closest: 1024x576
/ 1536x864
Format: png
or jpeg
Number of images: 1
Response: image URL (base64 or hosted β store image in S3 or n8n file store)
Image validation & optimization:
If DALLΒ·E returns similar images or unwanted text, instruct the model to "avoid text" and "no small illegible text".
For social: generate at least 2 variations (n=2) and pick the better one by simple heuristics: higher color contrast, faces count not zero if needed, absence of text in image.
Cost control:
Node 8 β Output Formatter (assemble final payload)
Purpose: Collate generated content and image URLs; run quick QA & scoring; produce final JSON artifact or trigger posting steps.
Output JSON schema:
{
"source": "{{sourceDomain}}",
"article_title": "{{title}}",
"article_url": "{{url}}",
"linkedIn": {
"text": "...",
"hashtags": ["#...","#..."],
"engagement_question": "..."
},
"reddit": {
"text": "...",
"prompts": ["..."],
"subreddit": "r/technology"
},
"x_twitter": {
"text": "...",
"char_count": 123
},
"image": {
"url": "...",
"size": "1200x628",
"alt_text": "..."
},
"quality_score": 0.92,
"warnings": []
}
Quality scoring algorithm (basic example):
Title presence: +0.1
MainText length >= 300 chars: +0.2
LinkedIn length within 200β250: +0.2
Reddit length within 300β400: +0.2
Tweet β€ 280: +0.1
Image generated: +0.1
Total max: 1.0. Implement thresholds: >=0.8
= ready; <0.8
= flag for review.
JavaScript snippet to compute quality score:
const liLen = items[0].json.linkedIn.text.length;
const rdLen = items[0].json.reddit.text.length;
const twLen = items[0].json.x_twitter.text.length;
let score = 0;
if (items[0].json.article_title) score += 0.1;
if (items[0].json.mainText && items[0].json.mainText.length >= 300) score += 0.2;
score += (liLen >=200 && liLen <=250) ? 0.2 : Math.max(0, 0.2 - Math.abs(liLen-225)/500);
score += (rdLen >=300 && rdLen <=400) ? 0.2 : Math.max(0, 0.2 - Math.abs(rdLen-350)/1000);
score += (twLen <=280) ? 0.1 : 0;
if (items[0].json.image && items[0].json.image.url) score += 0.2;
return [{ json: { ...items[0].json, quality_score: Number(score.toFixed(2)) } }];
Output actions:
Save as a record in the DB or Google Sheet
Send to Slack/email for review if quality_score < 0.8
Auto-post if quality_score >= 0.9
and auto-posting enabled (requires platform tokens)
Complete Node JSON snippets (n8n-compatible examples)
Below are simplified node config snippets (you will adapt ids & credentials in n8n). Use the n8n UI to import or create nodes with the following properties.
HTTP Request node (example export)
{
"name": "HTTP Request",
"type": "n8n-nodes-base.httpRequest",
"parameters": {
"url": "={{$json[\"url\"]}}",
"options": {},
"responseFormat": "string",
"headerParameters": [
{
"name": "User-Agent",
"value": "Mozilla/5.0 (compatible; n8n-bot/1.0; +https://yourdomain.example)"
},
{
"name": "Accept-Language",
"value": "en-US,en;q=0.9"
}
],
"timeout": 150000
}
}
OpenAI Chat node (LinkedIn) example
{
"name": "OpenAI (LinkedIn)",
"type": "n8n-nodes-base.openAi",
"parameters": {
"resource": "chat",
"model": "gpt-4o",
"options": {
"temperature": 0.2,
"max_tokens": 600
},
"messages": [
{ "role": "system", "content": "You are a professional communications specialist crafting LinkedIn posts..." },
{ "role": "user", "content": "Article title: {{$json[\"title\"]}} ... Write 200-250 words..." }
]
},
"credentials": { "openAiApi": "OpenAI API Credential Name" }
}
(Repeat similar nodes for Reddit and X with adjusted prompts and model parameters.)
OpenAI Image node (DALLΒ·E 3)
{
"name": "OpenAI Image",
"type": "n8n-nodes-base.openAi",
"parameters": {
"resource": "image",
"operation": "generate",
"model": "dall-e-3",
"prompt": "={{$json[\"dalle_prompt\"]}}",
"size": "1200x628",
"n": 1
},
"credentials": { "openAiApi": "OpenAI API Credential Name" }
}
Note: n8n node names and parameter keys can change with versions; consult n8n docs for exact names. n8n Docs+1
Prompt examples (copy/paste-ready)
LinkedIn (system + user)
System
You are a professional communications specialist crafting LinkedIn posts for senior technology audiences. Tone: authoritative, helpful, and concise. Use thought leadership framing and recommend one practical takeaway. Provide 3 relevant hashtags. Include a single engagement question at the end.
User
Title: {{title}}
Source: {{sourceDomain}}
Date: {{date}}
Summary: {{firstParagraph}}
Full text excerpt (for context): {{trimmedMainText}}
Instructions: Write a LinkedIn post 200β250 words. Use short paragraphs, include exactly 3 hashtags, and end with one engagement question. Return JSON.
Reddit (system + user)
System
You are a community manager writing a Reddit post. Tone neutral and discussion-friendly.
User
Produce 300β400 words: short summary, 3 talking points, and 3 open questions for discussion. Suggest a subreddit.
X/Twitter
System
You are a social copywriter. Keep under 280 chars, punchy, 1β3 hashtags, 1 emoji allowed.
User
Create a viral-optimized tweet based on title + top insight
Web scraping: practical considerations
Headers & rate limits
Use realistic User-Agent
. Respect robots.txt & terms.
Rate-limit your HTTP requests (e.g., 1 req/sec) and backoff on 429.
Handling JS-heavy pages/paywalls
Extraction fallback
Regex examples
Strip inline scripts: html = html.replace(/<script[\s\S]*?>[\s\S]*?<\/script>/gi,'');
Extract date ISO: const dateMatch = html.match(/\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}/);
Error Handling & Reliability
Common failure modes & solutions
429 Rate Limit: exponential backoff & queueing.
5xx from target site: retry 3 times, then notify reviewer.
OpenAI timeout: lower max_tokens
or split the task (shorter prompts).
Bad scraping: fallback to user copy/paste.
Retry mechanism (pseudocode):
async function retryRequest(fn, retries=3, delay=2000){
for(let i=0;i<retries;i++){
try { return await fn(); }
catch(e){
if (i===retries-1) throw e;
await sleep(delay * Math.pow(2, i)); // exponential backoff
}
}
}
Logging & Monitoring
Send errors to Sentry/Logstash; store event metadata (URL, node, error, timestamp).
Track OpenAI token usage per run.
Cost Optimization Strategies
Use gpt-3.5-turbo
for X/Twitter and Reddit; gpt-4o
only for LinkedIn if necessary.
Trim article input: send headline + first 2β3 paragraphs + 3 bullet keypoints rather than full text.
Limit image generation to 1 image by default; store image for reuse (cache by article URL hash).
Batch processing: schedule high-volume jobs at off-peak times.
Advanced Features (optional)
Webhook / Bookmarklet
Scheduling & batch
Caching
Multi-account
A/B testing
Testing & Validation
Test URLs
TechCrunch example: https://c-sharpcorner.com/2024/10/01/example-article
(Use a real article for testing)
BBC tech: https://www.bbc.com/news/technology-xxxxx
Reuters business: https://www.reuters.com/technology/...
Quality checks
Character counts for each platform
No verbatim long quotes (>90 chars)
Image alt text present
Ensure no PII in generated content
Manual test plan
Paste URL β run workflow.
Inspect extracted fields.
Verify LinkedIn text length & hashtags.
Review Reddit for discussion prompts.
Confirm tweet β€280 chars.
Check the image visually.
Check quality score; if below threshold, mark for manual review.
Deployment & Monitoring
Deploy n8n on a reliable host (Kubernetes or managed n8n cloud).
Provision concurrency: workers for HTTP and OpenAI nodes.
Rate-limits: implement token accounting; set usage alerts.
Use health checks and restart policies.
Monitoring metrics to expose
Troubleshooting (common issues)
Empty mainText
: increase parser heuristics, use the renderer, or accept manual paste.
OpenAI 429: queue and backoff; reduce concurrency & use multiple API keys in rotation.
DALLΒ·E returns text in image: add "no text" in prompt and reject images containing text using OCR check.
Tweet too long: auto-invoke a rewrite prompt with max_tokens
small and temperature 0.2.
n8n node schema mismatch : update nodes to match current n8n version (n8n changes parameter names).
Cost Analysis (example estimate)
(Estimates illustrative β check OpenAI pricing & your region)
Per article:
GPT-3.5 prompts (short) β ~0.5β1k tokens: low cost (~$0.002β$0.01)
GPT-4o for LinkedIn β higher (depends on OpenAI pricing)
DALLΒ·E 3 image β billed per image generation (varies)
Average total per article: $0.05β$2.50, depending on models and images.
Cost control: use cheaper models for short text, cache images, and only use advanced models on high-value content.
(Always verify with the latest OpenAI pricing.) OpenAI Help Center+1
Maintenance & Scaling
Review Prompts Quarterly β keep scoring thresholds and prompt templates updated.
Monitor OpenAI model changes & n8n node updates.
Implement a rollout plan for model changes (A/B).
Use multi-region deployments and autoscale worker pools for volume bursts.