Introduction
When working with Hugging Face APIs (Inference API, Endpoints, Hub access), authentication requires an Access Token.
A common mistake developers make is hardcoding the token directly inside the source code, like this:
client = InferenceClient(
model="HuggingFaceH4/zephyr-7b-beta",
token="hf_xxxxxxxxxxxxxxxxx"
)
This practice is insecure and dangerous, especially when:
This article explains secure, production-ready approaches to manage Hugging Face tokens properly.
Why Hardcoding Tokens Is Dangerous
Hardcoding secrets leads to:
Security Risks
Operational Problems
Compliance Violations
Best Practices for Secure Token Management
There are four recommended methods:
Environment Variables
.env Files (Project-based secret management)
Hugging Face CLI Authentication
Production Secret Managers
Method 1: Using Environment Variables (Recommended Standard)
Environment variables store secrets outside the source code.
Step 1: Set Environment Variable (Windows)
setx HF_TOKEN "hf_your_actual_token_here"
Restart your terminal or VS Code after running this command.
Step 2: Access in Python
import os
from huggingface_hub import InferenceClient
token = os.getenv("HF_TOKEN")
client = InferenceClient(
model="HuggingFaceH4/zephyr-7b-beta",
token=token
)
response = client.chat_completion(
messages=[{"role": "user", "content": "Explain AI agents."}]
)
print(response.choices[0].message["content"])
Benefits
Method 2: Using .env File (Best for Application Development)
This is ideal for FastAPI, Flask, RAG systems, or MCP clients.
Step 1: Install Dependency
pip install python-dotenv
Step 2: Create .env File
HF_TOKEN=hf_your_actual_token_here
Step 3: Add to .gitignore
.env
This prevents accidental upload to GitHub.
Step 4: Load in Python
import os
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
load_dotenv()
token = os.getenv("HF_TOKEN")
client = InferenceClient(
model="HuggingFaceH4/zephyr-7b-beta",
token=token
)
response = client.chat_completion(
messages=[{"role": "user", "content": "What is RAG?"}]
)
print(response.choices[0].message["content"])
Benefits
Clean separation of secrets
Environment-based configuration
Industry standard practice
Method 3: Hugging Face CLI Login
Hugging Face CLI stores credentials securely in the local cache.
Step 1: Install CLI
pip install huggingface_hub
Step 2: Login
huggingface-cli login or hf login
Paste your token.
Step 3: Use Without Token in Code
from huggingface_hub import InferenceClient
client = InferenceClient(
model="HuggingFaceH4/zephyr-7b-beta"
)
response = client.chat_completion(
messages=[{"role": "user", "content": "Explain MCP architecture."}]
)
print(response.choices[0].message["content"])
Benefits
Production-Grade Secret Management
For enterprise deployments, use:
Docker ENV variables
Kubernetes Secrets
AWS Secrets Manager
Azure Key Vault
GitHub Actions Secrets
Example (Dockerfile):
ENV HF_TOKEN=hf_your_token_here
Or pass during runtime:
docker run -e HF_TOKEN=hf_token image_name
Token Rotation Strategy
To improve security:
Use separate tokens for development and production
Rotate tokens periodically
Revoke exposed tokens immediately
Use minimal scope (Read only)
Recommended Approach by Environment
| Environment | Recommended Method |
|---|
| Local Development | Hugging Face CLI |
| Small Projects | .env file |
| FastAPI / Backend | Environment Variables |
| Docker | ENV variables |
| Enterprise | Secret Manager |