A Complete End-to-End Guide for Building Intelligent Stock Control Using Angular, ASP.NET Core, SQL Server, and AI/Analytics
Introduction
Inventory management is one of the most critical responsibilities for retail, manufacturing, logistics, and e-commerce companies. Too much stock increases storage cost; too little stock results in lost sales. Traditional systems only track quantities, purchases, and reorder levels. Modern businesses, however, require something more advanced: forecasting, anomaly detection, automated replenishment, and deeper analytics.
A Smart Inventory Management System powered by SQL Server Analytics provides these capabilities. With built-in query performance, Machine Learning Services, advanced reporting, and Angular-based dashboards, organizations can build intelligent solutions that predict demand, optimize stock levels, and reduce overall operational cost.
This guide explains how to build a complete production-ready, AI-enhanced smart inventory system using:
SQL Server (inventory, analytics, ML)
ASP.NET Core (API layer)
Angular (frontend UI)
AI models (forecasting and anomaly detection)
Background jobs (automated replenishment)
This article is designed for beginner, intermediate, and senior developers.
1. Understanding Smart Inventory Management
A smart inventory system goes beyond storing stock count. It uses analytics and AI to support business decisions.
Key Features
Real-time inventory tracking
Automatic reorder suggestions
Demand forecasting
Low-stock alerts
Supplier performance analysis
ABC classification
Expiry and batch tracking
Sales velocity analytics
Safety stock calculation
Dashboard visualizations
Traditional systems offer CRUD operations. Smart systems offer insights.
2. High-Level Architecture
Here is the recommended architecture for a robust smart inventory solution:
Angular UI
↓
ASP.NET Core REST API
↓
SQL Server (Inventory, Analytics, ML Models)
↓
Python/R ML Scripts (Forecasting)
↓
Background Services (alerts, reorder engine)
Each component has a specific responsibility:
Angular: dashboards, charts, tables, alerts, user operations
ASP.NET Core: APIs for stock, suppliers, forecasting, notifications
SQL Server: stores stock data, purchase history, demand patterns, model outputs
Machine Learning Services: forecasting models (Python/R)
Background Jobs: periodic analytics refresh, reorder suggestions, threshold monitoring
3. Designing the Inventory Database
SQL Server stores inventory, sales, supplier data, and forecast results.
3.1 Items Table
CREATE TABLE Items (
ItemId INT IDENTITY PRIMARY KEY,
ItemName NVARCHAR(200),
SKU NVARCHAR(100),
Category NVARCHAR(100),
SupplierId INT,
ReorderLevel INT,
SafetyStock INT,
UnitPrice DECIMAL(18,2)
);
3.2 Stock Table
CREATE TABLE Stock (
StockId INT IDENTITY PRIMARY KEY,
ItemId INT,
Quantity INT,
LastUpdated DATETIME DEFAULT GETDATE()
);
3.3 Sales History Table
CREATE TABLE SalesHistory (
SaleId INT IDENTITY PRIMARY KEY,
ItemId INT,
QuantitySold INT,
SaleDate DATE
);
3.4 Forecast Results
CREATE TABLE ForecastedDemand (
ForecastId INT IDENTITY PRIMARY KEY,
ItemId INT,
ForecastMonth DATE,
ForecastQuantity INT
);
3.5 Reorder Suggestions
CREATE TABLE SuggestedOrders (
SuggestionId INT IDENTITY PRIMARY KEY,
ItemId INT,
SuggestedQuantity INT,
GeneratedAt DATETIME DEFAULT GETDATE()
);
4. Using SQL Server Analytics for Demand Forecasting
SQL Server Machine Learning Services lets you run Python or R forecasting directly inside stored procedures. This avoids exporting data to external systems.
Example: Monthly Demand Forecast Using Python
EXEC sp_execute_external_script
@language = N'Python',
@script = N'
import pandas as pd
from statsmodels.tsa.holtwinters import ExponentialSmoothing
df = InputDataSet
df["SaleDate"] = pd.to_datetime(df["SaleDate"])
df = df.resample("M", on="SaleDate").sum()
model = ExponentialSmoothing(df["QuantitySold"], trend="add", seasonal="add", seasonal_periods=12)
fit = model.fit()
forecast = fit.forecast(3) # next 3 months
OutputDataSet = forecast.reset_index()
',
@input_data_1 = N'SELECT SaleDate, QuantitySold FROM SalesHistory WHERE ItemId = 101'
WITH RESULT SETS ((ForecastMonth DATE, ForecastQuantity FLOAT));
Insert results into ForecastedDemand:
INSERT INTO ForecastedDemand(ItemId, ForecastMonth, ForecastQuantity)
EXEC ForecastStoredProcedure @ItemId = 101;
5. Building ASP.NET Core API Layer
ASP.NET Core exposes inventory data and forecast analytics to Angular.
5.1 Get Current Stock
[HttpGet("stock")]
public async Task<IActionResult> GetStock()
{
var items = await _context.Stock
.Include(x => x.Item)
.Select(x => new {
x.Item.ItemName,
x.Quantity,
x.Item.ReorderLevel,
x.Item.SafetyStock
})
.ToListAsync();
return Ok(items);
}
5.2 Get Forecast Results
[HttpGet("forecast/{itemId}")]
public async Task<IActionResult> GetForecast(int itemId)
{
var result = await _context.ForecastedDemand
.Where(x => x.ItemId == itemId)
.OrderBy(x => x.ForecastMonth)
.ToListAsync();
return Ok(result);
}
5.3 Generate Reorder Suggestions
[HttpPost("suggest-reorder")]
public async Task<IActionResult> GenerateReorders()
{
var items = await _context.Items.ToListAsync();
var stock = await _context.Stock.ToListAsync();
foreach(var item in items)
{
var qty = stock.First(s => s.ItemId == item.ItemId).Quantity;
if(qty < item.ReorderLevel)
{
var suggestedQty = (item.ReorderLevel + item.SafetyStock) - qty;
_context.SuggestedOrders.Add(new SuggestedOrder
{
ItemId = item.ItemId,
SuggestedQuantity = suggestedQty
});
}
}
await _context.SaveChangesAsync();
return Ok();
}
6. Angular Application Structure
Angular gives stock dashboards, charts, and alert screen.
Recommended modules:
DashboardModule
InventoryModule
SalesModule
ForecastModule
AlertsModule
Install Charts
npm install chart.js ngx-charts
7. Angular Service for Inventory API
inventory.service.ts
@Injectable({ providedIn: 'root' })
export class InventoryService {
constructor(private http: HttpClient) {}
getStock(): Observable<StockItem[]> {
return this.http.get<StockItem[]>('/api/inventory/stock');
}
getForecast(id: number): Observable<Forecast[]> {
return this.http.get<Forecast[]>(`/api/inventory/forecast/${id}`);
}
}
export interface StockItem {
itemName: string;
quantity: number;
reorderLevel: number;
safetyStock: number;
}
export interface Forecast {
forecastMonth: string;
forecastQuantity: number;
}
8. Building Angular Dashboard
Stock Overview Component
stock-overview.component.ts
@Component({
selector: 'app-stock-overview',
templateUrl: './stock-overview.component.html'
})
export class StockOverviewComponent implements OnInit {
displayedColumns = ['itemName','quantity','reorderLevel','safetyStock'];
dataSource = new MatTableDataSource<StockItem>();
constructor(private inventory: InventoryService) {}
ngOnInit() {
this.inventory.getStock().subscribe(res => {
this.dataSource.data = res;
});
}
}
HTML:
<mat-card>
<h2>Current Stock</h2>
<table mat-table [dataSource]="dataSource" class="mat-elevation-z8">
<ng-container matColumnDef="itemName">
<th mat-header-cell *matHeaderCellDef> Item </th>
<td mat-cell *matCellDef="let row">{{ row.itemName }}</td>
</ng-container>
<ng-container matColumnDef="quantity">
<th mat-header-cell *matHeaderCellDef> Stock </th>
<td mat-cell *matCellDef="let row">{{ row.quantity }}</td>
</ng-container>
<ng-container matColumnDef="reorderLevel">
<th mat-header-cell *matHeaderCellDef> Reorder Level </th>
<td mat-cell *matCellDef="let row">{{ row.reorderLevel }}</td>
</ng-container>
<ng-container matColumnDef="safetyStock">
<th mat-header-cell *matHeaderCellDef> Safety Stock </th>
<td mat-cell *matCellDef="let row">{{ row.safetyStock }}</td>
</ng-container>
<tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
<tr mat-row *matRowDef="let row; columns: displayedColumns"></tr>
</table>
</mat-card>
9. Forecast Chart in Angular
forecast-chart.component.ts
@Component({
selector: 'app-forecast-chart',
templateUrl: './forecast-chart.component.html'
})
export class ForecastChartComponent implements OnInit {
lineChartData = [];
lineChartLabels = [];
constructor(private inventory: InventoryService) {}
ngOnInit() {
this.inventory.getForecast(101).subscribe(res => {
this.lineChartLabels = res.map(r => r.forecastMonth);
this.lineChartData = [
{
data: res.map(r => r.forecastQuantity),
label: 'Forecasted Demand'
}
];
});
}
}
HTML:
<mat-card>
<h2>Demand Forecast</h2>
<canvas baseChart
[datasets]="lineChartData"
[labels]="lineChartLabels"
chartType="line">
</canvas>
</mat-card>
10. Automated Reorder Engine
A background job (Hangfire or Quartz.NET) can run nightly:
Example Scheduled Job
public class ReorderJob
{
private readonly InventoryService _service;
public ReorderJob(InventoryService service)
{
_service = service;
}
public async Task Execute()
{
await _service.GenerateReorderSuggestions();
}
}
Register with Hangfire:
RecurringJob.AddOrUpdate<ReorderJob>(
"auto-reorder",
job => job.Execute(),
Cron.Daily);
11. Alerts and Notifications
Based on stock thresholds or forecasts, send alerts:
SQL trigger-based alerts
IF EXISTS (SELECT * FROM Stock WHERE Quantity < ReorderLevel)
INSERT INTO Alerts(ItemId, Message) VALUES (@ItemId, 'Low Stock');
Angular Alerts Screen
Use Material Snackbar or Notification Panel to display alerts.
12. Performance Analytics
A smart system must analyze:
Example SQL for turnover:
SELECT ItemId,
SUM(QuantitySold) / SUM(Quantity) AS TurnoverRate
FROM SalesHistory
JOIN Stock ON SalesHistory.ItemId = Stock.ItemId
GROUP BY SalesHistory.ItemId;
Angular visuals can show:
Doughnut charts
Column charts
Line graphs
13. AI Enhancements
13.1 Predictive Restocking
Use forecasting + safety stock.
13.2 Anomaly Detection
Detect unusual sales patterns.
13.3 Price Optimization
Suggest ideal selling price.
13.4 Stock-Out Prediction
Forecast when stock will reach zero.
13.5 Supplier Analytics
Predict late deliveries.
14. Security Best Practices
Secure API with JWT
Use stored procedures to avoid SQL injection
Encrypt sensitive data
Implement row-level security if multi-tenant
Use HTTPS for Angular app and API
15. Deployment Strategy
Recommended Setup
SQL Server: Azure SQL or VM
ASP.NET Core: Azure App Service
Angular: Azure Static Web App or Blob Storage website
ML Services: Azure Container Apps or SQL ML Services
Background jobs: Azure Functions or Hangfire
Conclusion
A Smart Inventory Management System powered by SQL Server Analytics combined with ASP.NET Core and Angular offers a complete, intelligent solution for modern organizations. It helps businesses not only track stock but also understand consumption patterns, predict demand, automate replenishment, and improve overall efficiency.
In this article, we covered:
Inventory schema design
SQL analytical queries
Demand forecasting with ML Services
ASP.NET Core APIs for inventory and forecasting
Angular dashboards for real-time stock visibility
Forecast charts
Automated reorder engine
Alerts and notifications
AI-driven enhancements
Security and deployment best practices
This system can be deployed across multiple industries including retail, food distribution, warehouses, manufacturing, and healthcare.